Compare commits
1 Commits
master
...
vec-based-
| Author | SHA1 | Date | |
|---|---|---|---|
| 21228ff3d7 |
@ -4,4 +4,5 @@ version = "0.1.0"
|
|||||||
edition = "2021"
|
edition = "2021"
|
||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
|
anyhow = "1.0.53"
|
||||||
thiserror = "1.0.30"
|
thiserror = "1.0.30"
|
||||||
|
|||||||
278
README.md
278
README.md
@ -1,49 +1,13 @@
|
|||||||
# NEK-Lang
|
# NEK-Lang
|
||||||
## Table of contents
|
|
||||||
- [NEK-Lang](#nek-lang)
|
|
||||||
- [Table of contents](#table-of-contents)
|
|
||||||
- [Variables](#variables)
|
|
||||||
- [Declaration](#declaration)
|
|
||||||
- [Assignment](#assignment)
|
|
||||||
- [Datatypes](#datatypes)
|
|
||||||
- [I64](#i64)
|
|
||||||
- [String](#string)
|
|
||||||
- [Array](#array)
|
|
||||||
- [Expressions](#expressions)
|
|
||||||
- [General](#general)
|
|
||||||
- [Mathematical Operators](#mathematical-operators)
|
|
||||||
- [Bitwise Operators](#bitwise-operators)
|
|
||||||
- [Logical Operators](#logical-operators)
|
|
||||||
- [Equality & Relational Operators](#equality--relational-operators)
|
|
||||||
- [Control-Flow](#control-flow)
|
|
||||||
- [Loop](#loop)
|
|
||||||
- [If / Else](#if--else)
|
|
||||||
- [Block Scopes](#block-scopes)
|
|
||||||
- [Functions](#functions)
|
|
||||||
- [Function definition](#function-definition)
|
|
||||||
- [Function calls](#function-calls)
|
|
||||||
- [IO](#io)
|
|
||||||
- [Print](#print)
|
|
||||||
- [Comments](#comments)
|
|
||||||
- [Line comments](#line-comments)
|
|
||||||
- [Feature Tracker](#feature-tracker)
|
|
||||||
- [High level Components](#high-level-components)
|
|
||||||
- [Language features](#language-features)
|
|
||||||
- [Parsing Grammar](#parsing-grammar)
|
|
||||||
- [Expressions](#expressions-1)
|
|
||||||
- [Statements](#statements)
|
|
||||||
- [Examples](#examples)
|
|
||||||
- [Extras](#extras)
|
|
||||||
- [Visual Studio Code Language Support](#visual-studio-code-language-support)
|
|
||||||
|
|
||||||
## Variables
|
## Variables
|
||||||
The variables are all contained in scopes. Variables defined in an outer scope can be accessed in
|
Currently all variables are global and completely unscoped. That means no matter where a variable is declared, it remains over the whole remaining runtime of the progam.
|
||||||
inner scoped. All variables defined in a scope that has ended do no longer exist and can't be
|
|
||||||
accessed.
|
All variables are currently of type `i64` (64-bit signed integer)
|
||||||
|
|
||||||
### Declaration
|
### Declaration
|
||||||
- Declare and initialize a new variable
|
- Declare and initialize a new variable
|
||||||
- Declaring a previously declared variable again will shadow the previous variable
|
- Declaring a previously declared variable again is currently equivalent to an assignment
|
||||||
- Declaration is needed before assignment or other usage
|
- Declaration is needed before assignment or other usage
|
||||||
- The variable name is on the left side of the `<-` operator
|
- The variable name is on the left side of the `<-` operator
|
||||||
- The assigned value is on the right side and can be any expression
|
- The assigned value is on the right side and can be any expression
|
||||||
@ -61,62 +25,6 @@ a = 123;
|
|||||||
```
|
```
|
||||||
The value `123` is assigned to the variable named `a`. `a` needs to be declared before this.
|
The value `123` is assigned to the variable named `a`. `a` needs to be declared before this.
|
||||||
|
|
||||||
## Datatypes
|
|
||||||
The available variable datatypes are `i64` (64-bit signed integer), `string` (`"this is a string"`) and `array` (`[10]`)
|
|
||||||
|
|
||||||
### I64
|
|
||||||
- The normal default datatype is `i64` which is a 64-bit signed integer
|
|
||||||
- Can be created by just writing an integer literal like `546`
|
|
||||||
- Inside the number literal `_` can be inserted for visual separation `100_000`
|
|
||||||
- The i64 values can be used as expected in calculations, conditions and so on
|
|
||||||
```
|
|
||||||
my_i64 <- 123_456;
|
|
||||||
```
|
|
||||||
|
|
||||||
### String
|
|
||||||
- Strings mainly exist for formatting the text output of a program
|
|
||||||
- Strings can be created by using doublequotes like in other languages `"Hello world"`
|
|
||||||
- There is no way to access or change the characters of the string
|
|
||||||
- Unicode characters are supported `"Hello 🌎"`
|
|
||||||
- Escape characters `\n`, `\r`, `\t`, `\"`, `\\` are supported
|
|
||||||
- String can be assigned to variables, just like i64
|
|
||||||
```
|
|
||||||
world <- "🌎";
|
|
||||||
|
|
||||||
print "Hello ";
|
|
||||||
print world;
|
|
||||||
print "\n";
|
|
||||||
```
|
|
||||||
|
|
||||||
### Array
|
|
||||||
- Arrays can contain any other datatypes and don't need to have the same type in all cells
|
|
||||||
- Arrays can be created by using brackets with the size in between `[size]`
|
|
||||||
- Arrays must be assigned to a variable in order to be used
|
|
||||||
- All cells will be initialized with i64 0 values
|
|
||||||
- The size can be any expression that results in a positive i64 value
|
|
||||||
- The array size can't be changed after creation
|
|
||||||
- The arrays data is always allocated on the heap
|
|
||||||
- The array cells can be accessed by using the variable name and specifying the index in brackets
|
|
||||||
`my_arr[index]`
|
|
||||||
- The index can be any expression that results in a positive i64 value in the range of the arrays
|
|
||||||
indices
|
|
||||||
- The indices start with 0
|
|
||||||
- When an array is passed to a function, it is passed by reference
|
|
||||||
```
|
|
||||||
width <- 5;
|
|
||||||
heigt <- 5;
|
|
||||||
|
|
||||||
// Initialize array of size 25, initialized with 25x 0
|
|
||||||
my_array = [width * height];
|
|
||||||
|
|
||||||
// Modify first value
|
|
||||||
my_array[0] = 5;
|
|
||||||
|
|
||||||
// Print first value
|
|
||||||
// Outputs `5`
|
|
||||||
print my_array[0];
|
|
||||||
```
|
|
||||||
|
|
||||||
## Expressions
|
## Expressions
|
||||||
The operator precedence is the same order as in `C` for all implemented operators.
|
The operator precedence is the same order as in `C` for all implemented operators.
|
||||||
Refer to the
|
Refer to the
|
||||||
@ -146,9 +54,7 @@ Supported mathematical operations:
|
|||||||
- "Bit flip" (One's complement) `~a`
|
- "Bit flip" (One's complement) `~a`
|
||||||
|
|
||||||
### Logical Operators
|
### Logical Operators
|
||||||
The logical operators evaluate the operands as `false` if they are equal to `0` and `true` if they are not equal to `0`.
|
The logical operators evaluate the operands as `false` if they are equal to `0` and `true` if they are not equal to `0`
|
||||||
Note that logical operators like AND / OR do not support short-circuit evaluation. So Both sides of
|
|
||||||
the logical operation will be evaluated, even if it might not be necessary.
|
|
||||||
- And `a && b`
|
- And `a && b`
|
||||||
- Or `a || b`
|
- Or `a || b`
|
||||||
- Not `!a` (if `a` is equal to `0`, the result is `1`, otherwise the result is `0`)
|
- Not `!a` (if `a` is equal to `0`, the result is `1`, otherwise the result is `0`)
|
||||||
@ -163,53 +69,37 @@ The equality and relational operations result in `1` if the condition is evaluat
|
|||||||
- Less or equal than `a <= b`
|
- Less or equal than `a <= b`
|
||||||
|
|
||||||
## Control-Flow
|
## Control-Flow
|
||||||
For conditions like in if or loops, every non-zero value is equal to `true`, and `0` is `false`.
|
For conditions like in if or loops, every non zero value is equal to `true`, and `0` is `false`.
|
||||||
|
|
||||||
### Loop
|
### Loop
|
||||||
- The `loop` keyword can be used as an infinite loop, as a while loop or as a while loop with
|
- There is currently only the `loop` keyword that can act like a `while` with optional advancement (an expression that is executed after the loop body)
|
||||||
advancement (an expression that is executed after each loop)
|
- The `loop` keyword is followed by the condition (an expression) without needing parentheses
|
||||||
- If only `loop` is used, directly followed by the body, it is an infinite loop that needs to be
|
|
||||||
terminated by using the `break` keyword
|
|
||||||
- The `loop` keyword can be followed by the condition (an expression) without needing parentheses
|
|
||||||
- *Optional:* If there is a `;` after the condition, there must be another expression which is used as the advancement
|
- *Optional:* If there is a `;` after the condition, there must be another expression which is used as the advancement
|
||||||
- The loops body is wrapped in braces (`{ }`) just like in C/C++
|
- The loops body is wrapped in braces (`{ }`) just like in C/C++
|
||||||
- The `continue` keyword can be used to end the current loop iteration early
|
|
||||||
- The `break` keyword can be used to fully break out of the current loop
|
|
||||||
|
|
||||||
```
|
```
|
||||||
// Print the numbers from 0 to 9
|
// Print the numbers from 0 to 9
|
||||||
|
|
||||||
// With endless loop
|
|
||||||
i <- 0;
|
|
||||||
loop {
|
|
||||||
if i >= 10 {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
print i;
|
|
||||||
i = i + 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Without advancement
|
// Without advancement
|
||||||
i <- 0;
|
i <- 0;
|
||||||
loop i < 10 {
|
loop i < 10 {
|
||||||
print i;
|
print i;
|
||||||
i = i + 1;
|
i = i - 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
// With advancement
|
// With advancement
|
||||||
k <- 0;
|
k <- 0;
|
||||||
loop k < 10; k = k + 1 {
|
loop k < 10; k = k - 1 {
|
||||||
print k;
|
print k;
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
### If / Else
|
### If / Else
|
||||||
|
|
||||||
- The language supports `if` and an optional `else`
|
- The language supports `if` and an optional `else`
|
||||||
- After the `if` keyword must be the deciding condition, parentheses are not needed
|
- After the `if` keyword must be the deciding condition, parentheses are not needed
|
||||||
- The blocks are wrapped in braces (`{ }`)
|
- The block *if-true* block is wrapped in braces (`{ }`)
|
||||||
- *Optional:* If there is an `else` after the *if-block*, there must be a following *if-false*, aka. else block
|
- *Optional:* If there is an `else` after the *if-block*, there must be a following *if-false*, aka. else block
|
||||||
- NOTE: Logical operators like AND / OR do not support short-circuit evaluation. So Both sides of
|
|
||||||
the logical operations will be evaluated, even if it might not be necessary
|
|
||||||
```
|
```
|
||||||
a <- 1;
|
a <- 1;
|
||||||
b <- 2;
|
b <- 2;
|
||||||
@ -222,88 +112,15 @@ if a == b {
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
### Block Scopes
|
|
||||||
|
|
||||||
- It is possible to create a limited scope for local variables that will no longer exist once the
|
|
||||||
scope ends
|
|
||||||
- Shadowing variables by redefining a variable in an inner scope is supported
|
|
||||||
```
|
|
||||||
var_in_outer_scope <- 5;
|
|
||||||
{
|
|
||||||
var_in_inner_scope <- 3;
|
|
||||||
|
|
||||||
// Inner scope can access both vars
|
|
||||||
print var_in_outer_scope;
|
|
||||||
print var_in_inner_scope;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Outer scope is still valid
|
|
||||||
print var_in_outer_scope;
|
|
||||||
|
|
||||||
// !!! THIS DOES NOT WORK !!!
|
|
||||||
// The inner scope has ended
|
|
||||||
print var_in_inner_scope;
|
|
||||||
```
|
|
||||||
|
|
||||||
## Functions
|
|
||||||
|
|
||||||
### Function definition
|
|
||||||
- Functions can be defined by using the `fun` keyword, followed by the function name and the
|
|
||||||
parameters in parentheses. After the parentheses, the body is specified inside a braces block
|
|
||||||
- The function parameters are specified by only their names
|
|
||||||
- The function body has its own scope
|
|
||||||
- Parameters are only accessible inside the body
|
|
||||||
- Variables from the outer scope can be accessed and modified if the are defined before the function
|
|
||||||
- Variables from the outer scope are shadowed by parameters or local variables with the same name
|
|
||||||
- The `return` keyword can be used to return a value from the function and exit it immediately
|
|
||||||
- If no return is specified, a special `void` value is returned. That value can't be used in
|
|
||||||
calculations or comparisons, but can be stored in a variable (even tho it doesn't make sense)
|
|
||||||
- Functions can only be defined at the top-level. So defining a function inside of any other scoped
|
|
||||||
block (like inside another function, if, loop, ...) is invalid
|
|
||||||
- Functions can only be used after definition and there is no forward declaration right now
|
|
||||||
- However a function can be called recursively inside of itself
|
|
||||||
- Functions can't be redefined, so defining a function with an existing name is invalid
|
|
||||||
```
|
|
||||||
fun add_maybe(a, b) {
|
|
||||||
if a < 100 {
|
|
||||||
return a;
|
|
||||||
} else {
|
|
||||||
return a + b;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fun println(val) {
|
|
||||||
print val;
|
|
||||||
print "\n";
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
### Function calls
|
|
||||||
- Function calls are primary expressions, so they can be directly used in calculations (if they
|
|
||||||
return appropriate values)
|
|
||||||
- Function calls are performed by writing the function name, followed by the arguments in parentheses
|
|
||||||
- The arguments can be any expressions, separated by commas
|
|
||||||
```
|
|
||||||
b <- 100;
|
|
||||||
result <- add_maybe(250, b);
|
|
||||||
|
|
||||||
// Prints 350 + new-line
|
|
||||||
println(result);
|
|
||||||
```
|
|
||||||
|
|
||||||
## IO
|
## IO
|
||||||
|
|
||||||
### Print
|
### Print
|
||||||
Printing is implemented via the `print` keyword
|
Printing is implemented via the `print` keyword
|
||||||
- The `print` keyword is followed by an expression, the value of which will be printed to the terminal
|
- The `print` keyword is followed by an expression, the value of which will be printed to the terminal.
|
||||||
- To add a line break a string print can be used `print "\n";`
|
- Print currently automatically adds a linebreak
|
||||||
```
|
```
|
||||||
a <- 1;
|
a <- 1;
|
||||||
// Outputs `1` to the terminal
|
print a; // Outputs `"1\n"` to the terminal
|
||||||
print a;
|
|
||||||
|
|
||||||
// Outputs a new-line to the terminal
|
|
||||||
print "\n";
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## Comments
|
## Comments
|
||||||
@ -323,8 +140,6 @@ Line comments can be initiated by using `//`
|
|||||||
- [x] Lexer: Transforms text into Tokens
|
- [x] Lexer: Transforms text into Tokens
|
||||||
- [x] Parser: Transforms Tokens into Abstract Syntax Tree
|
- [x] Parser: Transforms Tokens into Abstract Syntax Tree
|
||||||
- [x] Interpreter (tree-walk-interpreter): Walks the tree and evaluates the expressions / statements
|
- [x] Interpreter (tree-walk-interpreter): Walks the tree and evaluates the expressions / statements
|
||||||
- [x] Simple optimizer: Apply trivial optimizations to the Ast
|
|
||||||
- [x] Precalculate binary ops / unary ops that have only literal operands
|
|
||||||
|
|
||||||
## Language features
|
## Language features
|
||||||
|
|
||||||
@ -334,7 +149,7 @@ Line comments can be initiated by using `//`
|
|||||||
- [x] Subtraction `a - b`
|
- [x] Subtraction `a - b`
|
||||||
- [x] Multiplication `a * b`
|
- [x] Multiplication `a * b`
|
||||||
- [x] Division `a / b`
|
- [x] Division `a / b`
|
||||||
- [x] Modulo `a % b`
|
- [x] Modulo `a % b
|
||||||
- [x] Negate `-a`
|
- [x] Negate `-a`
|
||||||
- [x] Parentheses `(a + b) * c`
|
- [x] Parentheses `(a + b) * c`
|
||||||
- [x] Logical boolean operators
|
- [x] Logical boolean operators
|
||||||
@ -358,43 +173,23 @@ Line comments can be initiated by using `//`
|
|||||||
- [x] Variables
|
- [x] Variables
|
||||||
- [x] Declaration
|
- [x] Declaration
|
||||||
- [x] Assignment
|
- [x] Assignment
|
||||||
- [x] Local variables (for example inside loop, if, else, functions)
|
|
||||||
- [x] Scoped block for specific local vars `{ ... }`
|
|
||||||
- [x] Statements with semicolon & Multiline programs
|
- [x] Statements with semicolon & Multiline programs
|
||||||
- [x] Control flow
|
- [x] Control flow
|
||||||
- [x] Loops
|
- [x] While loop `while X { ... }`
|
||||||
- [x] While-style loop `loop X { ... }`
|
|
||||||
- [x] For-style loop without with `X` as condition and `Y` as advancement `loop X; Y { ... }`
|
|
||||||
- [x] Infinite loop `loop { ... }`
|
|
||||||
- [x] Break `break`
|
|
||||||
- [x] Continue `continue`
|
|
||||||
- [x] If else statement `if X { ... } else { ... }`
|
- [x] If else statement `if X { ... } else { ... }`
|
||||||
- [x] If Statement
|
- [x] If Statement
|
||||||
- [x] Else statement
|
- [x] Else statement
|
||||||
- [x] Line comments `//`
|
- [x] Line comments `//`
|
||||||
- [x] Strings
|
- [x] Strings
|
||||||
- [x] Arrays
|
|
||||||
- [x] Creating array with size `X` as a variable `arr <- [X]`
|
|
||||||
- [x] Accessing arrays by index `arr[X]`
|
|
||||||
- [x] IO Intrinsics
|
- [x] IO Intrinsics
|
||||||
- [x] Print
|
- [x] Print
|
||||||
- [x] Functions
|
|
||||||
- [x] Function declaration `fun f(X, Y, Z) { ... }`
|
|
||||||
- [x] Function calls `f(1, 2, 3)`
|
|
||||||
- [x] Function returns `return X`
|
|
||||||
- [x] Local variables
|
|
||||||
- [x] Pass arrays by-reference, i64 by-vale, string is a const ref
|
|
||||||
|
|
||||||
# Parsing Grammar
|
## Grammar
|
||||||
|
|
||||||
## Expressions
|
### Expressions
|
||||||
```
|
```
|
||||||
ARRAY_LITERAL = "[" expr "]"
|
LITERAL = I64_LITERAL | STR_LITERAL
|
||||||
ARRAY_ACCESS = IDENT "[" expr "]"
|
expr_primary = LITERAL | IDENT | "(" expr ")" | "-" expr_primary | "~" expr_primary
|
||||||
FUN_CALL = IDENT "(" (expr ",")* expr? ")"
|
|
||||||
LITERAL = I64_LITERAL | STR_LITERAL | ARRAY_LITERAL
|
|
||||||
expr_primary = LITERAL | IDENT | FUN_CALL | ARRAY_ACCESS | "(" expr ")" | "-" expr_primary
|
|
||||||
| "~" expr_primary
|
|
||||||
expr_mul = expr_primary (("*" | "/" | "%") expr_primary)*
|
expr_mul = expr_primary (("*" | "/" | "%") expr_primary)*
|
||||||
expr_add = expr_mul (("+" | "-") expr_mul)*
|
expr_add = expr_mul (("+" | "-") expr_mul)*
|
||||||
expr_shift = expr_add ((">>" | "<<") expr_add)*
|
expr_shift = expr_add ((">>" | "<<") expr_add)*
|
||||||
@ -408,33 +203,10 @@ expr_lor = expr_land ("||" expr_land)*
|
|||||||
expr = expr_lor
|
expr = expr_lor
|
||||||
```
|
```
|
||||||
|
|
||||||
## Statements
|
### Statements
|
||||||
```
|
```
|
||||||
stmt_return = "return" expr ";"
|
|
||||||
stmt_break = "break" ";"
|
|
||||||
stmt_continue = "continue" ";"
|
|
||||||
stmt_var_decl = IDENT "<-" expr ";"
|
|
||||||
stmt_fun_decl = "fun" IDENT "(" (IDENT ",")* IDENT? ")" "{" stmt* "}"
|
|
||||||
stmt_expr = expr ";"
|
|
||||||
stmt_block = "{" stmt* "}"
|
|
||||||
stmt_loop = "loop" (expr (";" expr)?)? "{" stmt* "}"
|
|
||||||
stmt_if = "if" expr "{" stmt* "}" ("else" "{" stmt* "}")?
|
stmt_if = "if" expr "{" stmt* "}" ("else" "{" stmt* "}")?
|
||||||
stmt_print = "print" expr ";"
|
stmt_loop = "loop" expr (";" expr)? "{" stmt* "}"
|
||||||
stmt = stmt_return | stmt_break | stmt_continue | stmt_var_decl | stmt_fun_decl
|
stmt_expr = expr ";"
|
||||||
| stmt_expr | stmt_block | stmt_loop | stmt_if | stmt_print
|
stmt = stmt_expr | stmt_loop
|
||||||
```
|
```
|
||||||
|
|
||||||
# Examples
|
|
||||||
There are a bunch of examples in the [examples](examples/) directory. Those include (non-optimal) solutions to the first five project euler problems, as well as a [simple Game of Life implementation](examples/game_of_life.nek).
|
|
||||||
|
|
||||||
To run an example via `cargo-run`, use:
|
|
||||||
```
|
|
||||||
cargo run --release -- examples/[NAME]
|
|
||||||
```
|
|
||||||
|
|
||||||
# Extras
|
|
||||||
## Visual Studio Code Language Support
|
|
||||||
A VSCode extension that provides simple syntax highlighing for nek is also available on
|
|
||||||
[gitlab](https://code.fbi.h-da.de/advanced-systems-programming-ws21/x4/nek-lang-vscode). Since this
|
|
||||||
is a very small scale project, the extension was not published and instuctions on how to install it
|
|
||||||
can be found in the mentioned repository.
|
|
||||||
@ -7,7 +7,7 @@
|
|||||||
sum <- 0;
|
sum <- 0;
|
||||||
i <- 0;
|
i <- 0;
|
||||||
loop i < 1_000; i = i + 1 {
|
loop i < 1_000; i = i + 1 {
|
||||||
if i % 3 == 0 || i % 5 == 0 {
|
if i % 3 == 0 | i % 5 == 0 {
|
||||||
sum = sum + i;
|
sum = sum + i;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -10,12 +10,14 @@ sum <- 0;
|
|||||||
|
|
||||||
a <- 0;
|
a <- 0;
|
||||||
b <- 1;
|
b <- 1;
|
||||||
|
tmp <- 0;
|
||||||
|
|
||||||
loop a < 4_000_000 {
|
loop a < 4_000_000 {
|
||||||
if a % 2 == 0 {
|
if a % 2 == 0 {
|
||||||
sum = sum + a;
|
sum = sum + a;
|
||||||
}
|
}
|
||||||
|
|
||||||
tmp <- a;
|
tmp = a;
|
||||||
a = b;
|
a = b;
|
||||||
b = b + tmp;
|
b = b + tmp;
|
||||||
}
|
}
|
||||||
|
|||||||
@ -18,10 +18,10 @@ loop number > 1 {
|
|||||||
|
|
||||||
div = div + 1;
|
div = div + 1;
|
||||||
if div * div > number {
|
if div * div > number {
|
||||||
if number > 1 && number > result {
|
if number > 1 & number > result {
|
||||||
result = number;
|
result = number;
|
||||||
}
|
}
|
||||||
break;
|
number = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
@ -4,25 +4,30 @@
|
|||||||
//
|
//
|
||||||
// Correct Answer: 906609
|
// Correct Answer: 906609
|
||||||
|
|
||||||
fun reverse(n) {
|
|
||||||
rev <- 0;
|
|
||||||
loop n {
|
|
||||||
rev = rev * 10 + n % 10;
|
|
||||||
n = n / 10;
|
|
||||||
}
|
|
||||||
return rev;
|
|
||||||
}
|
|
||||||
|
|
||||||
res <- 0;
|
res <- 0;
|
||||||
|
|
||||||
i <- 100;
|
tmp <- 0;
|
||||||
loop i < 1_000; i = i + 1 {
|
num <- 0;
|
||||||
k <- i;
|
num_rev <- 0;
|
||||||
loop k < 1_000; k = k + 1 {
|
|
||||||
num <- i * k;
|
|
||||||
num_rev <- reverse(num);
|
|
||||||
|
|
||||||
if num == num_rev && num > res {
|
i <- 100;
|
||||||
|
k <- 100;
|
||||||
|
loop i < 1_000; i = i + 1 {
|
||||||
|
k = 100;
|
||||||
|
loop k < 1_000; k = k + 1 {
|
||||||
|
num_rev = 0;
|
||||||
|
|
||||||
|
num = i * k;
|
||||||
|
|
||||||
|
tmp = num;
|
||||||
|
|
||||||
|
loop tmp {
|
||||||
|
num_rev = num_rev*10 + tmp % 10;
|
||||||
|
tmp = tmp / 10;
|
||||||
|
}
|
||||||
|
|
||||||
|
if num == num_rev & num > res {
|
||||||
res = num;
|
res = num;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -4,19 +4,19 @@
|
|||||||
#
|
#
|
||||||
# Correct Answer: 906609
|
# Correct Answer: 906609
|
||||||
|
|
||||||
def reverse(n):
|
|
||||||
rev = 0
|
|
||||||
while n:
|
|
||||||
rev = rev * 10 + n % 10
|
|
||||||
n //= 10
|
|
||||||
return rev
|
|
||||||
|
|
||||||
res = 0
|
res = 0
|
||||||
|
|
||||||
for i in range(100, 1_000):
|
for i in range(100, 999):
|
||||||
for k in range(i, 1_000):
|
for k in range(100, 999):
|
||||||
|
|
||||||
num = i * k
|
num = i * k
|
||||||
num_rev = reverse(num)
|
tmp = num
|
||||||
|
|
||||||
|
num_rev = 0
|
||||||
|
while tmp != 0:
|
||||||
|
num_rev = num_rev*10 + tmp % 10
|
||||||
|
tmp = tmp // 10
|
||||||
|
|
||||||
if num == num_rev and num > res:
|
if num == num_rev and num > res:
|
||||||
res = num
|
res = num
|
||||||
|
|||||||
@ -3,21 +3,26 @@
|
|||||||
//
|
//
|
||||||
// Correct Answer: 232_792_560
|
// Correct Answer: 232_792_560
|
||||||
|
|
||||||
fun gcd(x, y) {
|
num <- 20;
|
||||||
loop y {
|
should_continue <- 1;
|
||||||
tmp <- x;
|
i <- 2;
|
||||||
x = y;
|
|
||||||
y = tmp % y;
|
loop should_continue {
|
||||||
|
should_continue = 0;
|
||||||
|
|
||||||
|
i = 20;
|
||||||
|
loop i >= 2; i = i - 1 {
|
||||||
|
if num % i != 0 {
|
||||||
|
should_continue = 1;
|
||||||
|
|
||||||
|
// break
|
||||||
|
i = 0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return x;
|
if should_continue == 1 {
|
||||||
|
num = num + 20;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
result <- 1;
|
print num;
|
||||||
|
|
||||||
i <- 1;
|
|
||||||
loop i <= 20; i = i + 1 {
|
|
||||||
result = result * (i / gcd(i, result));
|
|
||||||
}
|
|
||||||
|
|
||||||
print result;
|
|
||||||
|
|||||||
@ -1,15 +0,0 @@
|
|||||||
# 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
|
|
||||||
# What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
|
|
||||||
#
|
|
||||||
# Correct Answer: 232_792_560
|
|
||||||
|
|
||||||
def gcd(x, y):
|
|
||||||
while y:
|
|
||||||
x, y = y, x % y
|
|
||||||
return x
|
|
||||||
|
|
||||||
result = 1
|
|
||||||
for i in range(1, 21):
|
|
||||||
result *= i // gcd(i, result)
|
|
||||||
|
|
||||||
print(result)
|
|
||||||
@ -1,134 +0,0 @@
|
|||||||
fun print_field(field, width, height) {
|
|
||||||
y <- 0;
|
|
||||||
loop y < height; y = y+1 {
|
|
||||||
x <- 0;
|
|
||||||
loop x < width; x = x+1 {
|
|
||||||
if field[y*height + x] {
|
|
||||||
print "# ";
|
|
||||||
} else {
|
|
||||||
print ". ";
|
|
||||||
}
|
|
||||||
}
|
|
||||||
print "\n";
|
|
||||||
}
|
|
||||||
print "\n";
|
|
||||||
}
|
|
||||||
|
|
||||||
fun count_neighbours(field, x, y, width, height) {
|
|
||||||
neighbours <- 0;
|
|
||||||
if y > 0 {
|
|
||||||
if x > 0 {
|
|
||||||
if field[(y-1)*width + (x-1)] {
|
|
||||||
// Top left
|
|
||||||
neighbours = neighbours + 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if field[(y-1)*width + x] {
|
|
||||||
// Top
|
|
||||||
neighbours = neighbours + 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
if x < width-1 {
|
|
||||||
if field[(y-1)*width + (x+1)] {
|
|
||||||
// Top right
|
|
||||||
neighbours = neighbours + 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if x > 0 {
|
|
||||||
if field[y*width + (x-1)] {
|
|
||||||
// Left
|
|
||||||
neighbours = neighbours + 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if x < width-1 {
|
|
||||||
if field[y*width + (x+1)] {
|
|
||||||
// Right
|
|
||||||
neighbours = neighbours + 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
if y < height-1 {
|
|
||||||
if x > 0 {
|
|
||||||
if field[(y+1)*width + (x-1)] {
|
|
||||||
// Bottom left
|
|
||||||
neighbours = neighbours + 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if field[(y+1)*width + x] {
|
|
||||||
// Bottom
|
|
||||||
neighbours = neighbours + 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
if x < width-1 {
|
|
||||||
if field[(y+1)*width + (x+1)] {
|
|
||||||
// Bottom right
|
|
||||||
neighbours = neighbours + 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return neighbours;
|
|
||||||
}
|
|
||||||
|
|
||||||
fun copy(from, to, len) {
|
|
||||||
i <- 0;
|
|
||||||
loop i < len; i = i + 1 {
|
|
||||||
to[i] = from[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Set the width and height of the field
|
|
||||||
width <- 10;
|
|
||||||
height <- 10;
|
|
||||||
|
|
||||||
// Create the main and temporary field
|
|
||||||
field <- [width*height];
|
|
||||||
field2 <- [width*height];
|
|
||||||
|
|
||||||
// Preset the main field with a glider
|
|
||||||
field[1] = 1;
|
|
||||||
field[12] = 1;
|
|
||||||
field[20] = 1;
|
|
||||||
field[21] = 1;
|
|
||||||
field[22] = 1;
|
|
||||||
|
|
||||||
fun run_gol(num_rounds) {
|
|
||||||
runs <- 0;
|
|
||||||
loop runs < num_rounds; runs = runs + 1 {
|
|
||||||
// Print the field
|
|
||||||
print_field(field, width, height);
|
|
||||||
|
|
||||||
// Calculate next stage from field and store into field2
|
|
||||||
y <- 0;
|
|
||||||
loop y < height; y = y+1 {
|
|
||||||
x <- 0;
|
|
||||||
loop x < width; x = x+1 {
|
|
||||||
|
|
||||||
// Get the neighbours of the current cell
|
|
||||||
neighbours <- count_neighbours(field, x, y, width, height);
|
|
||||||
|
|
||||||
// Set the new cell according to the neighbour count
|
|
||||||
if neighbours < 2 || neighbours > 3 {
|
|
||||||
field2[y*width + x] = 0;
|
|
||||||
} else {
|
|
||||||
if neighbours == 3 {
|
|
||||||
field2[y*width + x] = 1;
|
|
||||||
} else {
|
|
||||||
field2[y*width + x] = field[y*width + x];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Transfer from field2 to field
|
|
||||||
copy(field2, field, width*height);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
run_gol(32);
|
|
||||||
@ -1,9 +0,0 @@
|
|||||||
fun fib(n) {
|
|
||||||
if n <= 1 {
|
|
||||||
return n;
|
|
||||||
} else {
|
|
||||||
return fib(n-1) + fib(n-2);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
print fib(30);
|
|
||||||
@ -1,6 +0,0 @@
|
|||||||
def fib(n):
|
|
||||||
if n <= 1:
|
|
||||||
return n
|
|
||||||
return fib(n-1) + fib(n-2)
|
|
||||||
|
|
||||||
print(fib(30))
|
|
||||||
@ -1,31 +0,0 @@
|
|||||||
fun square(a) {
|
|
||||||
return a * a;
|
|
||||||
}
|
|
||||||
|
|
||||||
fun add(a, b) {
|
|
||||||
return a + b;
|
|
||||||
}
|
|
||||||
|
|
||||||
fun mul(a, b) {
|
|
||||||
return a * b;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Funtion with multiple args & nested calls to different functions
|
|
||||||
fun addmul(a, b, c) {
|
|
||||||
return mul(add(a, b), c);
|
|
||||||
}
|
|
||||||
|
|
||||||
a <- 10;
|
|
||||||
b <- 20;
|
|
||||||
c <- 3;
|
|
||||||
|
|
||||||
result <- addmul(a, b, c) + square(c);
|
|
||||||
|
|
||||||
// Access and modify outer variable. Argument `a` must not be used from outer var
|
|
||||||
fun sub_from_result(a) {
|
|
||||||
result = result - a;
|
|
||||||
}
|
|
||||||
|
|
||||||
sub_from_result(30);
|
|
||||||
|
|
||||||
print result;
|
|
||||||
133
src/ast.rs
133
src/ast.rs
@ -1,188 +1,126 @@
|
|||||||
use std::rc::Rc;
|
use std::rc::Rc;
|
||||||
|
|
||||||
use crate::stringstore::{Sid, StringStore};
|
/// Types for binary operators
|
||||||
|
|
||||||
/// Types for binary operations
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||||
pub enum BinOpType {
|
pub enum BinOpType {
|
||||||
/// Addition ("+")
|
/// Addition
|
||||||
Add,
|
Add,
|
||||||
|
|
||||||
/// Subtraction ("-")
|
/// Subtraction
|
||||||
Sub,
|
Sub,
|
||||||
|
|
||||||
/// Multiplication ("*")
|
/// Multiplication
|
||||||
Mul,
|
Mul,
|
||||||
|
|
||||||
/// Division ("/")
|
/// Divide
|
||||||
Div,
|
Div,
|
||||||
|
|
||||||
/// Modulo / Remainder ("%")
|
/// Modulo
|
||||||
Mod,
|
Mod,
|
||||||
|
|
||||||
/// Compare Equal ("==")
|
/// Compare Equal
|
||||||
EquEqu,
|
EquEqu,
|
||||||
|
|
||||||
/// Compare Not Equal ("!=")
|
/// Compare Not Equal
|
||||||
NotEqu,
|
NotEqu,
|
||||||
|
|
||||||
/// Compare Less than ("<")
|
/// Less than
|
||||||
Less,
|
Less,
|
||||||
|
|
||||||
/// Compare Less than or Equal ("<=")
|
/// Less than or Equal
|
||||||
LessEqu,
|
LessEqu,
|
||||||
|
|
||||||
/// Compare Greater than (">")
|
/// Greater than
|
||||||
Greater,
|
Greater,
|
||||||
|
|
||||||
/// Compare Greater than or Equal (">=")
|
/// Greater than or Equal
|
||||||
GreaterEqu,
|
GreaterEqu,
|
||||||
|
|
||||||
/// Bitwise Or ("|")
|
/// Bitwise OR (inclusive or)
|
||||||
BOr,
|
BOr,
|
||||||
|
|
||||||
/// Bitwise And ("&")
|
/// Bitwise And
|
||||||
BAnd,
|
BAnd,
|
||||||
|
|
||||||
/// Bitwise Xor / Exclusive Or ("^")
|
/// Bitwise Xor (exclusive or)
|
||||||
BXor,
|
BXor,
|
||||||
|
|
||||||
/// Logical And ("&&")
|
/// Logical And
|
||||||
LAnd,
|
LAnd,
|
||||||
|
|
||||||
/// Logical Or ("||")
|
/// Logical Or
|
||||||
LOr,
|
LOr,
|
||||||
|
|
||||||
/// Bitwise Shift Left ("<<")
|
/// Shift Left
|
||||||
Shl,
|
Shl,
|
||||||
|
|
||||||
/// Bitwise Shift Right (">>")
|
/// Shift Right
|
||||||
Shr,
|
Shr,
|
||||||
|
|
||||||
/// Assign value to variable ("=")
|
/// Assign value to variable
|
||||||
Assign,
|
Assign,
|
||||||
|
|
||||||
|
/// Declare new variable with value
|
||||||
|
Declare,
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Types for unary operations
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||||
pub enum UnOpType {
|
pub enum UnOpType {
|
||||||
/// Unary Negation ("-")
|
/// Unary Negate
|
||||||
Negate,
|
Negate,
|
||||||
|
|
||||||
/// Bitwise Not / Bitflip ("~")
|
/// Bitwise Not
|
||||||
BNot,
|
BNot,
|
||||||
|
|
||||||
/// Logical Not ("!")
|
/// Logical Not
|
||||||
LNot,
|
LNot,
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Ast Node for possible Expression variants
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||||
pub enum Expression {
|
pub enum Expression {
|
||||||
/// Integer literal (64-bit)
|
/// Integer literal (64-bit)
|
||||||
I64(i64),
|
I64(i64),
|
||||||
/// String literal
|
/// String literal
|
||||||
String(Sid),
|
String(Rc<String>),
|
||||||
|
/// Variable
|
||||||
/// Array with size as an expression
|
Var(String),
|
||||||
ArrayLiteral(Box<Expression>),
|
|
||||||
/// Array access with name, stackpos and position as expression
|
|
||||||
ArrayAccess(Sid, usize, Box<Expression>),
|
|
||||||
|
|
||||||
/// Function call with name, stackpos and the arguments as a vec of expressions
|
|
||||||
FunCall(Sid, usize, Vec<Expression>),
|
|
||||||
|
|
||||||
/// Variable with name and the stackpos from behind. This means that stackpos 0 refers to the
|
|
||||||
/// last variable on the stack and not the first
|
|
||||||
Var(Sid, usize),
|
|
||||||
/// Binary operation. Consists of type, left hand side and right hand side
|
/// Binary operation. Consists of type, left hand side and right hand side
|
||||||
BinOp(BinOpType, Box<Expression>, Box<Expression>),
|
BinOp(BinOpType, Box<Expression>, Box<Expression>),
|
||||||
/// Unary operation. Consists of type and operand
|
/// Unary operation. Consists of type and operand
|
||||||
UnOp(UnOpType, Box<Expression>),
|
UnOp(UnOpType, Box<Expression>),
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Ast Node for a loop
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||||
pub struct Loop {
|
pub struct Loop {
|
||||||
/// The condition that determines if the loop should continue
|
/// The condition that determines if the loop should continue
|
||||||
pub condition: Option<Expression>,
|
pub condition: Expression,
|
||||||
/// This is executed after each loop to advance the condition variables
|
/// This is executed after each loop to advance the condition variables
|
||||||
pub advancement: Option<Expression>,
|
pub advancement: Option<Expression>,
|
||||||
/// The loop body that is executed each loop
|
/// The loop body that is executed each loop
|
||||||
pub body: BlockScope,
|
pub body: Ast,
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Ast Node for an if
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||||
pub struct If {
|
pub struct If {
|
||||||
/// The condition
|
/// The condition
|
||||||
pub condition: Expression,
|
pub condition: Expression,
|
||||||
/// The body that is executed when condition is true
|
/// The body that is executed when condition is true
|
||||||
pub body_true: BlockScope,
|
pub body_true: Ast,
|
||||||
/// The if body that is executed when the condition is false
|
/// The if body that is executed when the condition is false
|
||||||
pub body_false: BlockScope,
|
pub body_false: Ast,
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Ast Node for a function declaration
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
|
||||||
pub struct FunDecl {
|
|
||||||
/// The function name as StringID, stored in the stringstore
|
|
||||||
pub name: Sid,
|
|
||||||
/// The absolute position on the function stack where the function is stored
|
|
||||||
pub fun_stackpos: usize,
|
|
||||||
/// The argument names as StringIDs
|
|
||||||
pub argnames: Vec<Sid>,
|
|
||||||
/// The function body
|
|
||||||
pub body: Rc<BlockScope>,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Ast Node for a variable declaration
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
|
||||||
pub struct VarDecl {
|
|
||||||
/// The variable name as StringID, stored in the stringstore
|
|
||||||
pub name: Sid,
|
|
||||||
/// The absolute position on the variable stack where the variable is stored
|
|
||||||
pub var_stackpos: usize,
|
|
||||||
/// The right hand side that generates the initial value for the variable
|
|
||||||
pub rhs: Expression,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Ast Node for the possible Statement variants
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||||
pub enum Statement {
|
pub enum Statement {
|
||||||
/// Return from a function with the given result value as an expression
|
|
||||||
Return(Expression),
|
|
||||||
/// Break out of the current loop
|
|
||||||
Break,
|
|
||||||
/// End the current loop iteration early and continue with the next loop iteration
|
|
||||||
Continue,
|
|
||||||
/// A variable declaration
|
|
||||||
Declaration(VarDecl),
|
|
||||||
/// A function declaration
|
|
||||||
FunDeclare(FunDecl),
|
|
||||||
/// A simple expression. This could be a function call or an assignment for example
|
|
||||||
Expr(Expression),
|
Expr(Expression),
|
||||||
/// A freestanding block scope
|
|
||||||
Block(BlockScope),
|
|
||||||
/// A loop
|
|
||||||
Loop(Loop),
|
Loop(Loop),
|
||||||
/// An if
|
|
||||||
If(If),
|
If(If),
|
||||||
/// A print statement that will output the value of the given expression to the terminal
|
|
||||||
Print(Expression),
|
Print(Expression),
|
||||||
}
|
}
|
||||||
|
|
||||||
/// A number of statements that form a block of code together
|
#[derive(Debug, PartialEq, Eq, Clone, Default)]
|
||||||
pub type BlockScope = Vec<Statement>;
|
|
||||||
|
|
||||||
/// A full abstract syntax tree
|
|
||||||
#[derive(Clone, Default)]
|
|
||||||
pub struct Ast {
|
pub struct Ast {
|
||||||
/// The stringstore contains the actual string values which are replaced with StringIDs in the
|
pub prog: Vec<Statement>,
|
||||||
/// Ast. So this is needed to get the actual strings later
|
|
||||||
pub stringstore: StringStore,
|
|
||||||
/// The main (top-level) code given as a number of statements
|
|
||||||
pub main: BlockScope,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl BinOpType {
|
impl BinOpType {
|
||||||
@ -195,6 +133,7 @@ impl BinOpType {
|
|||||||
|
|
||||||
pub fn precedence(&self) -> u8 {
|
pub fn precedence(&self) -> u8 {
|
||||||
match self {
|
match self {
|
||||||
|
BinOpType::Declare => 0,
|
||||||
BinOpType::Assign => 1,
|
BinOpType::Assign => 1,
|
||||||
BinOpType::LOr => 2,
|
BinOpType::LOr => 2,
|
||||||
BinOpType::LAnd => 3,
|
BinOpType::LAnd => 3,
|
||||||
|
|||||||
@ -1,116 +0,0 @@
|
|||||||
use crate::ast::{Ast, BlockScope, Expression, If, Loop, Statement, BinOpType, UnOpType, VarDecl};
|
|
||||||
|
|
||||||
/// A trait that allows to optimize an abstract syntax tree
|
|
||||||
pub trait AstOptimizer {
|
|
||||||
/// Consume an abstract syntax tree and return an ast that has the same functionality but with
|
|
||||||
/// optional optimizations.
|
|
||||||
fn optimize(ast: Ast) -> Ast;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A very simple optimizer that applies trivial optimizations like precalculation expressions that
|
|
||||||
/// have only literals as operands
|
|
||||||
pub struct SimpleAstOptimizer;
|
|
||||||
|
|
||||||
impl AstOptimizer for SimpleAstOptimizer {
|
|
||||||
fn optimize(mut ast: Ast) -> Ast {
|
|
||||||
Self::optimize_block(&mut ast.main);
|
|
||||||
ast
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl SimpleAstOptimizer {
|
|
||||||
fn optimize_block(block: &mut BlockScope) {
|
|
||||||
for stmt in block {
|
|
||||||
match stmt {
|
|
||||||
Statement::Expr(expr) => Self::optimize_expr(expr),
|
|
||||||
Statement::Block(block) => Self::optimize_block(block),
|
|
||||||
Statement::Loop(Loop {
|
|
||||||
condition,
|
|
||||||
advancement,
|
|
||||||
body,
|
|
||||||
}) => {
|
|
||||||
if let Some(condition) = condition {
|
|
||||||
Self::optimize_expr(condition);
|
|
||||||
}
|
|
||||||
if let Some(advancement) = advancement {
|
|
||||||
Self::optimize_expr(advancement)
|
|
||||||
}
|
|
||||||
Self::optimize_block(body);
|
|
||||||
}
|
|
||||||
Statement::If(If {
|
|
||||||
condition,
|
|
||||||
body_true,
|
|
||||||
body_false,
|
|
||||||
}) => {
|
|
||||||
Self::optimize_expr(condition);
|
|
||||||
Self::optimize_block(body_true);
|
|
||||||
Self::optimize_block(body_false);
|
|
||||||
}
|
|
||||||
Statement::Print(expr) => Self::optimize_expr(expr),
|
|
||||||
Statement::Declaration(VarDecl { name: _, var_stackpos: _, rhs}) => Self::optimize_expr(rhs),
|
|
||||||
Statement::FunDeclare(_) => (),
|
|
||||||
Statement::Return(expr) => Self::optimize_expr(expr),
|
|
||||||
Statement::Break | Statement::Continue => (),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn optimize_expr(expr: &mut Expression) {
|
|
||||||
match expr {
|
|
||||||
Expression::BinOp(bo, lhs, rhs) => {
|
|
||||||
Self::optimize_expr(lhs);
|
|
||||||
Self::optimize_expr(rhs);
|
|
||||||
|
|
||||||
// Precalculate binary operations that consist of 2 literals. No need to do this at
|
|
||||||
// runtime, as all parts of the calculation are known at *compiletime* / parsetime.
|
|
||||||
match (lhs.as_mut(), rhs.as_mut()) {
|
|
||||||
(Expression::I64(lhs), Expression::I64(rhs)) => {
|
|
||||||
let new_expr = match bo {
|
|
||||||
BinOpType::Add => Expression::I64(*lhs + *rhs),
|
|
||||||
BinOpType::Mul => Expression::I64(*lhs * *rhs),
|
|
||||||
BinOpType::Sub => Expression::I64(*lhs - *rhs),
|
|
||||||
BinOpType::Div => Expression::I64(*lhs / *rhs),
|
|
||||||
BinOpType::Mod => Expression::I64(*lhs % *rhs),
|
|
||||||
BinOpType::BOr => Expression::I64(*lhs | *rhs),
|
|
||||||
BinOpType::BAnd => Expression::I64(*lhs & *rhs),
|
|
||||||
BinOpType::BXor => Expression::I64(*lhs ^ *rhs),
|
|
||||||
BinOpType::LAnd => Expression::I64(if (*lhs != 0) && (*rhs != 0) { 1 } else { 0 }),
|
|
||||||
BinOpType::LOr => Expression::I64(if (*lhs != 0) || (*rhs != 0) { 1 } else { 0 }),
|
|
||||||
BinOpType::Shr => Expression::I64(*lhs >> *rhs),
|
|
||||||
BinOpType::Shl => Expression::I64(*lhs << *rhs),
|
|
||||||
BinOpType::EquEqu => Expression::I64(if lhs == rhs { 1 } else { 0 }),
|
|
||||||
BinOpType::NotEqu => Expression::I64(if lhs != rhs { 1 } else { 0 }),
|
|
||||||
BinOpType::Less => Expression::I64(if lhs < rhs { 1 } else { 0 }),
|
|
||||||
BinOpType::LessEqu => Expression::I64(if lhs <= rhs { 1 } else { 0 }),
|
|
||||||
BinOpType::Greater => Expression::I64(if lhs > rhs { 1 } else { 0 }),
|
|
||||||
BinOpType::GreaterEqu => Expression::I64(if lhs >= rhs { 1 } else { 0 }),
|
|
||||||
|
|
||||||
BinOpType::Assign => unreachable!(),
|
|
||||||
};
|
|
||||||
*expr = new_expr;
|
|
||||||
},
|
|
||||||
_ => ()
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
Expression::UnOp(uo, operand) => {
|
|
||||||
Self::optimize_expr(operand);
|
|
||||||
|
|
||||||
// Precalculate unary operations just like binary ones
|
|
||||||
match operand.as_mut() {
|
|
||||||
Expression::I64(val) => {
|
|
||||||
let new_expr = match uo {
|
|
||||||
UnOpType::Negate => Expression::I64(-*val),
|
|
||||||
UnOpType::BNot => Expression::I64(!*val),
|
|
||||||
UnOpType::LNot => Expression::I64(if *val == 0 { 1 } else { 0 }),
|
|
||||||
};
|
|
||||||
*expr = new_expr;
|
|
||||||
}
|
|
||||||
_ => (),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
_ => (),
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@ -1,253 +1,85 @@
|
|||||||
use std::{cell::RefCell, rc::Rc};
|
use std::{fmt::Display, rc::Rc};
|
||||||
use thiserror::Error;
|
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
ast::{Ast, BinOpType, BlockScope, Expression, FunDecl, If, Statement, UnOpType},
|
ast::{Ast, BinOpType, Expression, If, Statement, UnOpType},
|
||||||
astoptimizer::{AstOptimizer, SimpleAstOptimizer},
|
|
||||||
lexer::lex,
|
lexer::lex,
|
||||||
nice_panic,
|
|
||||||
parser::parse,
|
parser::parse,
|
||||||
stringstore::{Sid, StringStore},
|
|
||||||
};
|
};
|
||||||
|
|
||||||
/// Runtime errors that can occur during execution
|
|
||||||
#[derive(Debug, Error)]
|
|
||||||
pub enum RuntimeError {
|
|
||||||
#[error("Invalid array Index: {0:?}")]
|
|
||||||
InvalidArrayIndex(Value),
|
|
||||||
|
|
||||||
#[error("Variable used but not declared: {0}")]
|
|
||||||
VarUsedNotDeclared(String),
|
|
||||||
|
|
||||||
#[error("Can't index into non-array variable: {0}")]
|
|
||||||
TryingToIndexNonArray(String),
|
|
||||||
|
|
||||||
#[error("Invalid value type for unary operation: {0:?}")]
|
|
||||||
UnOpInvalidType(Value),
|
|
||||||
|
|
||||||
#[error("Incompatible binary operations. Operands don't match: {0:?} and {1:?}")]
|
|
||||||
BinOpIncompatibleTypes(Value, Value),
|
|
||||||
|
|
||||||
#[error("Array access out of bounds: Accessed {0}, size is {1}")]
|
|
||||||
ArrayOutOfBounds(usize, usize),
|
|
||||||
|
|
||||||
#[error("Division by zero")]
|
|
||||||
DivideByZero,
|
|
||||||
|
|
||||||
#[error("Invalid number of arguments for function {0}. Expected {1}, got {2}")]
|
|
||||||
InvalidNumberOfArgs(String, usize, usize),
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Possible variants for the values
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
||||||
pub enum Value {
|
pub enum Value {
|
||||||
/// 64-bit integer value
|
|
||||||
I64(i64),
|
I64(i64),
|
||||||
/// String value
|
String(Rc<String>),
|
||||||
String(Sid),
|
|
||||||
/// Array value
|
|
||||||
Array(Rc<RefCell<Vec<Value>>>),
|
|
||||||
/// Void value
|
|
||||||
Void,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The exit type of a block. When a block ends, the exit type specified why the block ended.
|
|
||||||
#[derive(Debug, PartialEq, Eq, Clone)]
|
|
||||||
pub enum BlockExit {
|
|
||||||
/// Normal exit when the block just ends normally (no returns / breaks / continues / etc.)
|
|
||||||
Normal,
|
|
||||||
/// The block ended through a break statement. This will be propagated up to the next loop
|
|
||||||
/// and cause it to fully terminate
|
|
||||||
Break,
|
|
||||||
/// The block ended through a continue statement. This will be propagated up to the next loop
|
|
||||||
/// and cause it to start the next iteration
|
|
||||||
Continue,
|
|
||||||
/// The block ended through a return statement. This will propagate up to the next function
|
|
||||||
/// body end
|
|
||||||
Return(Value),
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Default)]
|
|
||||||
pub struct Interpreter {
|
pub struct Interpreter {
|
||||||
/// Run the SimpleAstOptimizer over the Ast before executing
|
// Variable table stores the runtime values of variables
|
||||||
pub optimize_ast: bool,
|
vartable: Vec<(String, Value)>,
|
||||||
|
|
||||||
/// Print the tokens after lexing
|
|
||||||
pub print_tokens: bool,
|
|
||||||
/// Print the ast after parsing
|
|
||||||
pub print_ast: bool,
|
|
||||||
|
|
||||||
/// Capture the output values of print statements instead of printing them to the terminal
|
|
||||||
pub capture_output: bool,
|
|
||||||
/// The stored values that were captured
|
|
||||||
output: Vec<Value>,
|
|
||||||
|
|
||||||
/// Variable table stores the runtime values of variables as a stack
|
|
||||||
vartable: Vec<Value>,
|
|
||||||
|
|
||||||
/// Function table stores the functions during runtime as a stack
|
|
||||||
funtable: Vec<FunDecl>,
|
|
||||||
|
|
||||||
/// The stringstore contains all strings used throughout the program
|
|
||||||
stringstore: StringStore,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Interpreter {
|
impl Interpreter {
|
||||||
/// Create a new Interpreter
|
|
||||||
pub fn new() -> Self {
|
pub fn new() -> Self {
|
||||||
Self {
|
Self {
|
||||||
optimize_ast: true,
|
vartable: Vec::new(),
|
||||||
..Self::default()
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the captured output
|
fn get_var(&self, name: &str) -> Option<Value> {
|
||||||
pub fn output(&self) -> &[Value] {
|
self.vartable
|
||||||
&self.output
|
.iter()
|
||||||
|
.rev()
|
||||||
|
.find(|it| it.0 == name)
|
||||||
|
.map(|it| it.1.clone())
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Try to retrieve a variable value from the varstack. The idx is the index from the back of
|
fn get_var_mut(&mut self, name: &str) -> Option<&mut Value> {
|
||||||
/// the stack. So 0 is the last value, not the first
|
self.vartable
|
||||||
fn get_var(&self, idx: usize) -> Option<Value> {
|
.iter_mut()
|
||||||
self.vartable.get(self.vartable.len() - idx - 1).cloned()
|
.rev()
|
||||||
|
.find(|it| it.0 == name)
|
||||||
|
.map(|it| &mut it.1)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Try to retrieve a mutable reference to a variable value from the varstack. The idx is the
|
pub fn run_str(&mut self, code: &str, print_tokens: bool, print_ast: bool) {
|
||||||
/// index from the back of the stack. So 0 is the last value, not the first
|
let tokens = lex(code).unwrap();
|
||||||
fn get_var_mut(&mut self, idx: usize) -> Option<&mut Value> {
|
if print_tokens {
|
||||||
let idx = self.vartable.len() - idx - 1;
|
|
||||||
self.vartable.get_mut(idx)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Lex, parse and then run the given sourecode. This will terminate the program when an error
|
|
||||||
/// occurs and print an appropriate error message.
|
|
||||||
pub fn run_str(&mut self, code: &str) {
|
|
||||||
// Lex the tokens
|
|
||||||
let tokens = match lex(code) {
|
|
||||||
Ok(tokens) => tokens,
|
|
||||||
Err(e) => nice_panic!("Lexing error: {}", e),
|
|
||||||
};
|
|
||||||
|
|
||||||
if self.print_tokens {
|
|
||||||
println!("Tokens: {:?}", tokens);
|
println!("Tokens: {:?}", tokens);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Parse the ast
|
let ast = parse(tokens);
|
||||||
let ast = match parse(tokens) {
|
if print_ast {
|
||||||
Ok(ast) => ast,
|
println!("{:#?}", ast);
|
||||||
Err(e) => nice_panic!("Parsing error: {}", e),
|
|
||||||
};
|
|
||||||
|
|
||||||
// Run the ast
|
|
||||||
match self.run_ast(ast) {
|
|
||||||
Ok(_) => (),
|
|
||||||
Err(e) => nice_panic!("Runtime error: {}", e),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Execute the given Ast within the interpreter
|
|
||||||
pub fn run_ast(&mut self, mut ast: Ast) -> Result<(), RuntimeError> {
|
|
||||||
// Optimize the ast
|
|
||||||
if self.optimize_ast {
|
|
||||||
ast = SimpleAstOptimizer::optimize(ast);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if self.print_ast {
|
self.run(&ast);
|
||||||
println!("{:#?}", ast.main);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Take over the stringstore of the given ast
|
|
||||||
self.stringstore = ast.stringstore;
|
|
||||||
|
|
||||||
// Run the top level block (the main)
|
|
||||||
self.run_block(&ast.main)?;
|
|
||||||
Ok(())
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Run all statements in the given block
|
pub fn run(&mut self, prog: &Ast) {
|
||||||
pub fn run_block(&mut self, prog: &BlockScope) -> Result<BlockExit, RuntimeError> {
|
let vartable_len = self.vartable.len();
|
||||||
self.run_block_fp_offset(prog, 0)
|
for stmt in &prog.prog {
|
||||||
}
|
|
||||||
|
|
||||||
/// Same as run_block, but with an additional framepointer offset. This allows to free more
|
|
||||||
/// values from the stack than normally and can be used when passing arguments inside a
|
|
||||||
/// function body scope from the outside
|
|
||||||
pub fn run_block_fp_offset(
|
|
||||||
&mut self,
|
|
||||||
prog: &BlockScope,
|
|
||||||
framepointer_offset: usize,
|
|
||||||
) -> Result<BlockExit, RuntimeError> {
|
|
||||||
let framepointer = self.vartable.len() - framepointer_offset;
|
|
||||||
|
|
||||||
let mut block_exit = BlockExit::Normal;
|
|
||||||
|
|
||||||
'blockloop: for stmt in prog {
|
|
||||||
match stmt {
|
match stmt {
|
||||||
Statement::Break => return Ok(BlockExit::Break),
|
|
||||||
Statement::Continue => return Ok(BlockExit::Continue),
|
|
||||||
|
|
||||||
Statement::Return(expr) => {
|
|
||||||
let val = self.resolve_expr(expr)?;
|
|
||||||
|
|
||||||
block_exit = BlockExit::Return(val);
|
|
||||||
break 'blockloop;
|
|
||||||
}
|
|
||||||
|
|
||||||
Statement::Expr(expr) => {
|
Statement::Expr(expr) => {
|
||||||
self.resolve_expr(expr)?;
|
self.resolve_expr(expr);
|
||||||
}
|
}
|
||||||
|
|
||||||
Statement::Declaration(decl) => {
|
|
||||||
let rhs = self.resolve_expr(&decl.rhs)?;
|
|
||||||
self.vartable.push(rhs);
|
|
||||||
}
|
|
||||||
|
|
||||||
Statement::Block(block) => match self.run_block(block)? {
|
|
||||||
// Propagate return, continue and break
|
|
||||||
be @ (BlockExit::Return(_) | BlockExit::Continue | BlockExit::Break) => {
|
|
||||||
block_exit = be;
|
|
||||||
break 'blockloop;
|
|
||||||
}
|
|
||||||
_ => (),
|
|
||||||
},
|
|
||||||
|
|
||||||
Statement::Loop(looop) => {
|
Statement::Loop(looop) => {
|
||||||
// loop runs as long condition != 0
|
// loop runs as long condition != 0
|
||||||
loop {
|
loop {
|
||||||
// Check the loop condition
|
if matches!(self.resolve_expr(&looop.condition), Value::I64(0)) {
|
||||||
if let Some(condition) = &looop.condition {
|
break;
|
||||||
if matches!(self.resolve_expr(condition)?, Value::I64(0)) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Run the body
|
self.run(&looop.body);
|
||||||
let be = self.run_block(&looop.body)?;
|
|
||||||
match be {
|
|
||||||
// Propagate return
|
|
||||||
be @ BlockExit::Return(_) => {
|
|
||||||
block_exit = be;
|
|
||||||
break 'blockloop;
|
|
||||||
}
|
|
||||||
BlockExit::Break => break,
|
|
||||||
BlockExit::Continue | BlockExit::Normal => (),
|
|
||||||
}
|
|
||||||
|
|
||||||
// Run the advancement
|
|
||||||
if let Some(adv) = &looop.advancement {
|
if let Some(adv) = &looop.advancement {
|
||||||
self.resolve_expr(&adv)?;
|
self.resolve_expr(&adv);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Statement::Print(expr) => {
|
Statement::Print(expr) => {
|
||||||
let result = self.resolve_expr(expr)?;
|
let result = self.resolve_expr(expr);
|
||||||
|
print!("{}", result);
|
||||||
if self.capture_output {
|
|
||||||
self.output.push(result)
|
|
||||||
} else {
|
|
||||||
print!("{}", self.value_to_string(&result));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Statement::If(If {
|
Statement::If(If {
|
||||||
@ -255,264 +87,73 @@ impl Interpreter {
|
|||||||
body_true,
|
body_true,
|
||||||
body_false,
|
body_false,
|
||||||
}) => {
|
}) => {
|
||||||
// Run the right block depending on the conditions result being 0 or not
|
if matches!(self.resolve_expr(condition), Value::I64(0)) {
|
||||||
let exit = if matches!(self.resolve_expr(condition)?, Value::I64(0)) {
|
self.run(body_false);
|
||||||
self.run_block(body_false)?
|
|
||||||
} else {
|
} else {
|
||||||
self.run_block(body_true)?
|
self.run(body_true);
|
||||||
};
|
|
||||||
|
|
||||||
match exit {
|
|
||||||
// Propagate return, continue and break
|
|
||||||
be @ (BlockExit::Return(_) | BlockExit::Continue | BlockExit::Break) => {
|
|
||||||
block_exit = be;
|
|
||||||
break 'blockloop;
|
|
||||||
}
|
|
||||||
_ => (),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Statement::FunDeclare(fundec) => {
|
|
||||||
self.funtable.push(fundec.clone());
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
self.vartable.truncate(framepointer);
|
self.vartable.truncate(vartable_len);
|
||||||
|
|
||||||
Ok(block_exit)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Execute the given expression to retrieve the resulting value
|
fn resolve_expr(&mut self, expr: &Expression) -> Value {
|
||||||
fn resolve_expr(&mut self, expr: &Expression) -> Result<Value, RuntimeError> {
|
match expr {
|
||||||
let val = match expr {
|
|
||||||
Expression::I64(val) => Value::I64(*val),
|
Expression::I64(val) => Value::I64(*val),
|
||||||
Expression::ArrayLiteral(size) => {
|
|
||||||
let size = match self.resolve_expr(size)? {
|
|
||||||
Value::I64(size) if !size.is_negative() => size,
|
|
||||||
val => return Err(RuntimeError::InvalidArrayIndex(val)),
|
|
||||||
};
|
|
||||||
Value::Array(Rc::new(RefCell::new(vec![Value::I64(0); size as usize])))
|
|
||||||
}
|
|
||||||
Expression::String(text) => Value::String(text.clone()),
|
Expression::String(text) => Value::String(text.clone()),
|
||||||
Expression::BinOp(bo, lhs, rhs) => self.resolve_binop(bo, lhs, rhs)?,
|
Expression::BinOp(bo, lhs, rhs) => self.resolve_binop(bo, lhs, rhs),
|
||||||
Expression::UnOp(uo, operand) => self.resolve_unop(uo, operand)?,
|
Expression::UnOp(uo, operand) => self.resolve_unop(uo, operand),
|
||||||
Expression::Var(name, idx) => self.resolve_var(*name, *idx)?,
|
Expression::Var(name) => self.resolve_var(name),
|
||||||
Expression::ArrayAccess(name, idx, arr_idx) => {
|
|
||||||
self.resolve_array_access(*name, *idx, arr_idx)?
|
|
||||||
}
|
|
||||||
|
|
||||||
Expression::FunCall(fun_name, fun_stackpos, args) => {
|
|
||||||
let args_len = args.len();
|
|
||||||
|
|
||||||
// All of the arg expressions must be resolved before pushing the vars on the stack,
|
|
||||||
// otherwise the stack positions are incorrect while resolving
|
|
||||||
let args = args
|
|
||||||
.iter()
|
|
||||||
.map(|arg| self.resolve_expr(arg))
|
|
||||||
.collect::<Vec<_>>();
|
|
||||||
for arg in args {
|
|
||||||
self.vartable.push(arg?);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Function existance has been verified in the parser, so unwrap here shouldn't fail
|
|
||||||
let expected_num_args = self.funtable.get(*fun_stackpos).unwrap().argnames.len();
|
|
||||||
|
|
||||||
// Check if the number of provided arguments matches the number of expected arguments
|
|
||||||
if expected_num_args != args_len {
|
|
||||||
let fun_name = self
|
|
||||||
.stringstore
|
|
||||||
.lookup(*fun_name)
|
|
||||||
.cloned()
|
|
||||||
.unwrap_or("<unknown>".to_string());
|
|
||||||
return Err(RuntimeError::InvalidNumberOfArgs(
|
|
||||||
fun_name,
|
|
||||||
expected_num_args,
|
|
||||||
args_len,
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Run the function body and return the BlockExit type
|
|
||||||
match self.run_block_fp_offset(
|
|
||||||
&Rc::clone(&self.funtable.get(*fun_stackpos).unwrap().body),
|
|
||||||
expected_num_args,
|
|
||||||
)? {
|
|
||||||
BlockExit::Normal | BlockExit::Continue | BlockExit::Break => Value::Void,
|
|
||||||
BlockExit::Return(val) => val,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
Ok(val)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Retrive the value of a given array at the specified index from the varstack. The name is
|
|
||||||
/// given as a StringID and is used to reference the variable name in case of an error. The
|
|
||||||
/// idx is the stackpos where the array variable should be located and the arr_idx is the
|
|
||||||
/// actual array access index, given as an expression.
|
|
||||||
fn resolve_array_access(
|
|
||||||
&mut self,
|
|
||||||
name: Sid,
|
|
||||||
idx: usize,
|
|
||||||
arr_idx: &Expression,
|
|
||||||
) -> Result<Value, RuntimeError> {
|
|
||||||
// Resolve the array index into a value and check if it is a valid array index
|
|
||||||
let arr_idx = match self.resolve_expr(arr_idx)? {
|
|
||||||
Value::I64(size) if !size.is_negative() => size,
|
|
||||||
val => return Err(RuntimeError::InvalidArrayIndex(val)),
|
|
||||||
};
|
|
||||||
|
|
||||||
// Get the array value
|
|
||||||
let val = match self.get_var(idx) {
|
|
||||||
Some(val) => val,
|
|
||||||
None => {
|
|
||||||
return Err(RuntimeError::VarUsedNotDeclared(
|
|
||||||
self.stringstore
|
|
||||||
.lookup(name)
|
|
||||||
.cloned()
|
|
||||||
.unwrap_or_else(|| "<unknown>".to_string()),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Make sure it is an array
|
|
||||||
let arr = match val {
|
|
||||||
Value::Array(arr) => arr,
|
|
||||||
_ => {
|
|
||||||
return Err(RuntimeError::TryingToIndexNonArray(
|
|
||||||
self.stringstore
|
|
||||||
.lookup(name)
|
|
||||||
.cloned()
|
|
||||||
.unwrap_or_else(|| "<unknown>".to_string()),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Get the value of the requested cell inside the array
|
|
||||||
let arr = arr.borrow();
|
|
||||||
arr.get(arr_idx as usize)
|
|
||||||
.cloned()
|
|
||||||
.ok_or(RuntimeError::ArrayOutOfBounds(arr_idx as usize, arr.len()))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Retrive the value of a given variable from the varstack. The name is given as a StringID
|
|
||||||
/// and is used to reference the variable name in case of an error. The idx is the stackpos
|
|
||||||
/// where the variable should be located
|
|
||||||
fn resolve_var(&mut self, name: Sid, idx: usize) -> Result<Value, RuntimeError> {
|
|
||||||
match self.get_var(idx) {
|
|
||||||
Some(val) => Ok(val),
|
|
||||||
None => {
|
|
||||||
return Err(RuntimeError::VarUsedNotDeclared(
|
|
||||||
self.stringstore
|
|
||||||
.lookup(name)
|
|
||||||
.cloned()
|
|
||||||
.unwrap_or_else(|| "<unknown>".to_string()),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Execute a unary operation and get the resulting value
|
fn resolve_var(&mut self, name: &str) -> Value {
|
||||||
fn resolve_unop(&mut self, uo: &UnOpType, operand: &Expression) -> Result<Value, RuntimeError> {
|
match self.get_var(name) {
|
||||||
// Recursively resolve the operands expression into an actual value
|
Some(val) => val.clone(),
|
||||||
let operand = self.resolve_expr(operand)?;
|
None => panic!("Variable '{}' used but not declared", name),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Perform the correct operation, considering the operation and value type
|
fn resolve_unop(&mut self, uo: &UnOpType, operand: &Expression) -> Value {
|
||||||
Ok(match (operand, uo) {
|
let operand = self.resolve_expr(operand);
|
||||||
|
|
||||||
|
match (operand, uo) {
|
||||||
(Value::I64(val), UnOpType::Negate) => Value::I64(-val),
|
(Value::I64(val), UnOpType::Negate) => Value::I64(-val),
|
||||||
(Value::I64(val), UnOpType::BNot) => Value::I64(!val),
|
(Value::I64(val), UnOpType::BNot) => Value::I64(!val),
|
||||||
(Value::I64(val), UnOpType::LNot) => Value::I64(if val == 0 { 1 } else { 0 }),
|
(Value::I64(val), UnOpType::LNot) => Value::I64(if val == 0 { 1 } else { 0 }),
|
||||||
(val, _) => return Err(RuntimeError::UnOpInvalidType(val)),
|
_ => panic!("Value type is not compatible with unary operation"),
|
||||||
})
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Execute a binary operation and get the resulting value
|
fn resolve_binop(&mut self, bo: &BinOpType, lhs: &Expression, rhs: &Expression) -> Value {
|
||||||
fn resolve_binop(
|
let rhs = self.resolve_expr(rhs);
|
||||||
&mut self,
|
|
||||||
bo: &BinOpType,
|
|
||||||
lhs: &Expression,
|
|
||||||
rhs: &Expression,
|
|
||||||
) -> Result<Value, RuntimeError> {
|
|
||||||
let rhs = self.resolve_expr(rhs)?;
|
|
||||||
|
|
||||||
// Handle assignments separate from the other binary operations
|
|
||||||
match (&bo, &lhs) {
|
match (&bo, &lhs) {
|
||||||
// Normal variable assignment
|
(BinOpType::Declare, Expression::Var(name)) => {
|
||||||
(BinOpType::Assign, Expression::Var(name, idx)) => {
|
self.vartable.push((name.clone(), rhs.clone()));
|
||||||
// Get the variable mutably and assign the right hand side value
|
return rhs;
|
||||||
match self.get_var_mut(*idx) {
|
|
||||||
Some(val) => *val = rhs.clone(),
|
|
||||||
None => {
|
|
||||||
return Err(RuntimeError::VarUsedNotDeclared(
|
|
||||||
self.stringstore
|
|
||||||
.lookup(*name)
|
|
||||||
.cloned()
|
|
||||||
.unwrap_or_else(|| "<unknown>".to_string()),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return Ok(rhs);
|
|
||||||
}
|
}
|
||||||
// Array index assignment
|
(BinOpType::Assign, Expression::Var(name)) => {
|
||||||
(BinOpType::Assign, Expression::ArrayAccess(name, idx, arr_idx)) => {
|
match self.get_var_mut(name) {
|
||||||
// Calculate the array index
|
Some(val) => *val = rhs.clone(),
|
||||||
let arr_idx = match self.resolve_expr(arr_idx)? {
|
None => panic!("Runtime Error: Trying to assign value to undeclared variable"),
|
||||||
Value::I64(size) if !size.is_negative() => size,
|
|
||||||
val => return Err(RuntimeError::InvalidArrayIndex(val)),
|
|
||||||
};
|
|
||||||
|
|
||||||
// Get the mutable ref to the array variable
|
|
||||||
let val = match self.get_var_mut(*idx) {
|
|
||||||
Some(val) => val,
|
|
||||||
None => {
|
|
||||||
return Err(RuntimeError::VarUsedNotDeclared(
|
|
||||||
self.stringstore
|
|
||||||
.lookup(*name)
|
|
||||||
.cloned()
|
|
||||||
.unwrap_or_else(|| "<unknown>".to_string()),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Verify that it actually is an array
|
|
||||||
match val {
|
|
||||||
// Assign the right hand side value to the array it the given index
|
|
||||||
Value::Array(arr) => arr.borrow_mut()[arr_idx as usize] = rhs.clone(),
|
|
||||||
_ => {
|
|
||||||
return Err(RuntimeError::TryingToIndexNonArray(
|
|
||||||
self.stringstore
|
|
||||||
.lookup(*name)
|
|
||||||
.cloned()
|
|
||||||
.unwrap_or_else(|| "<unknown>".to_string()),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
return rhs;
|
||||||
return Ok(rhs);
|
|
||||||
}
|
}
|
||||||
_ => (),
|
_ => (),
|
||||||
}
|
}
|
||||||
|
|
||||||
// This code is only executed if the binop is not an assignment as the assignments return
|
let lhs = self.resolve_expr(lhs);
|
||||||
// early
|
|
||||||
|
|
||||||
// Resolve the left hand side to the value
|
match (lhs, rhs) {
|
||||||
let lhs = self.resolve_expr(lhs)?;
|
|
||||||
|
|
||||||
// Perform the appropriate calculations considering the operation type and datatypes of the
|
|
||||||
// two values
|
|
||||||
let result = match (lhs, rhs) {
|
|
||||||
(Value::I64(lhs), Value::I64(rhs)) => match bo {
|
(Value::I64(lhs), Value::I64(rhs)) => match bo {
|
||||||
BinOpType::Add => Value::I64(lhs + rhs),
|
BinOpType::Add => Value::I64(lhs + rhs),
|
||||||
BinOpType::Mul => Value::I64(lhs * rhs),
|
BinOpType::Mul => Value::I64(lhs * rhs),
|
||||||
BinOpType::Sub => Value::I64(lhs - rhs),
|
BinOpType::Sub => Value::I64(lhs - rhs),
|
||||||
BinOpType::Div => {
|
BinOpType::Div => Value::I64(lhs / rhs),
|
||||||
Value::I64(lhs.checked_div(rhs).ok_or(RuntimeError::DivideByZero)?)
|
BinOpType::Mod => Value::I64(lhs % rhs),
|
||||||
}
|
|
||||||
BinOpType::Mod => {
|
|
||||||
Value::I64(lhs.checked_rem(rhs).ok_or(RuntimeError::DivideByZero)?)
|
|
||||||
}
|
|
||||||
BinOpType::BOr => Value::I64(lhs | rhs),
|
BinOpType::BOr => Value::I64(lhs | rhs),
|
||||||
BinOpType::BAnd => Value::I64(lhs & rhs),
|
BinOpType::BAnd => Value::I64(lhs & rhs),
|
||||||
BinOpType::BXor => Value::I64(lhs ^ rhs),
|
BinOpType::BXor => Value::I64(lhs ^ rhs),
|
||||||
@ -527,27 +168,18 @@ impl Interpreter {
|
|||||||
BinOpType::Greater => Value::I64(if lhs > rhs { 1 } else { 0 }),
|
BinOpType::Greater => Value::I64(if lhs > rhs { 1 } else { 0 }),
|
||||||
BinOpType::GreaterEqu => Value::I64(if lhs >= rhs { 1 } else { 0 }),
|
BinOpType::GreaterEqu => Value::I64(if lhs >= rhs { 1 } else { 0 }),
|
||||||
|
|
||||||
BinOpType::Assign => unreachable!(),
|
BinOpType::Declare | BinOpType::Assign => unreachable!(),
|
||||||
},
|
},
|
||||||
(lhs, rhs) => return Err(RuntimeError::BinOpIncompatibleTypes(lhs, rhs)),
|
_ => panic!("Value types are not compatible"),
|
||||||
};
|
}
|
||||||
|
|
||||||
Ok(result)
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Get a string representation of the given value. This uses the interpreters StringStore to
|
impl Display for Value {
|
||||||
/// retrive the text values of Strings
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||||
fn value_to_string(&self, val: &Value) -> String {
|
match self {
|
||||||
match val {
|
Value::I64(val) => write!(f, "{}", val),
|
||||||
Value::I64(val) => format!("{}", val),
|
Value::String(text) => write!(f, "{}", text),
|
||||||
Value::Array(val) => format!("{:?}", val.borrow()),
|
|
||||||
Value::String(text) => format!(
|
|
||||||
"{}",
|
|
||||||
self.stringstore
|
|
||||||
.lookup(*text)
|
|
||||||
.unwrap_or(&"<invalid string>".to_string())
|
|
||||||
),
|
|
||||||
Value::Void => format!("void"),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -557,8 +189,6 @@ mod test {
|
|||||||
use super::{Interpreter, Value};
|
use super::{Interpreter, Value};
|
||||||
use crate::ast::{BinOpType, Expression};
|
use crate::ast::{BinOpType, Expression};
|
||||||
|
|
||||||
/// Simple test to check if a simple expression is executed properly.
|
|
||||||
/// Full system tests from lexing to execution can be found in `lib.rs`
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_interpreter_expr() {
|
fn test_interpreter_expr() {
|
||||||
// Expression: 1 + 2 * 3 + 4
|
// Expression: 1 + 2 * 3 + 4
|
||||||
@ -582,7 +212,7 @@ mod test {
|
|||||||
let expected = Value::I64(11);
|
let expected = Value::I64(11);
|
||||||
|
|
||||||
let mut interpreter = Interpreter::new();
|
let mut interpreter = Interpreter::new();
|
||||||
let actual = interpreter.resolve_expr(&ast).unwrap();
|
let actual = interpreter.resolve_expr(&ast);
|
||||||
|
|
||||||
assert_eq!(expected, actual);
|
assert_eq!(expected, actual);
|
||||||
}
|
}
|
||||||
|
|||||||
283
src/lexer.rs
283
src/lexer.rs
@ -1,9 +1,8 @@
|
|||||||
|
use crate::token::Token;
|
||||||
|
use anyhow::Result;
|
||||||
use std::{iter::Peekable, str::Chars};
|
use std::{iter::Peekable, str::Chars};
|
||||||
use thiserror::Error;
|
use thiserror::Error;
|
||||||
|
|
||||||
use crate::{token::Token, T};
|
|
||||||
|
|
||||||
/// Errors that can occur while lexing a given string
|
|
||||||
#[derive(Debug, Error)]
|
#[derive(Debug, Error)]
|
||||||
pub enum LexErr {
|
pub enum LexErr {
|
||||||
#[error("Failed to parse '{0}' as i64")]
|
#[error("Failed to parse '{0}' as i64")]
|
||||||
@ -21,111 +20,116 @@ pub enum LexErr {
|
|||||||
|
|
||||||
/// Lex the provided code into a Token Buffer
|
/// Lex the provided code into a Token Buffer
|
||||||
pub fn lex(code: &str) -> Result<Vec<Token>, LexErr> {
|
pub fn lex(code: &str) -> Result<Vec<Token>, LexErr> {
|
||||||
let lexer = Lexer::new(code);
|
let mut lexer = Lexer::new(code);
|
||||||
lexer.lex()
|
lexer.lex()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// The lexer is created from a reference to a sourcecode string and is consumed to create a token
|
|
||||||
/// buffer from that sourcecode.
|
|
||||||
struct Lexer<'a> {
|
struct Lexer<'a> {
|
||||||
/// The sourcecode text as a peekable iterator over the chars. Peekable allows for look-ahead
|
/// The sourcecode text as an iterator over the chars
|
||||||
/// and the use of the Chars iterator allows to support unicode characters
|
|
||||||
code: Peekable<Chars<'a>>,
|
code: Peekable<Chars<'a>>,
|
||||||
/// The lexed tokens
|
|
||||||
tokens: Vec<Token>,
|
|
||||||
/// The sourcecode character that is currently being lexed
|
|
||||||
current_char: char,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<'a> Lexer<'a> {
|
impl<'a> Lexer<'a> {
|
||||||
|
|
||||||
/// Create a new lexer from the given sourcecode
|
|
||||||
fn new(code: &'a str) -> Self {
|
fn new(code: &'a str) -> Self {
|
||||||
let code = code.chars().peekable();
|
let code = code.chars().peekable();
|
||||||
let tokens = Vec::new();
|
Self { code }
|
||||||
let current_char = '\0';
|
|
||||||
Self {
|
|
||||||
code,
|
|
||||||
tokens,
|
|
||||||
current_char,
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Consume the lexer and try to lex the contained sourcecode into a token buffer
|
fn lex(&mut self) -> Result<Vec<Token>, LexErr> {
|
||||||
fn lex(mut self) -> Result<Vec<Token>, LexErr> {
|
let mut tokens = Vec::new();
|
||||||
|
|
||||||
loop {
|
loop {
|
||||||
self.current_char = self.next();
|
match self.next() {
|
||||||
// Match on the current and next character. This gives a 1-char look-ahead and
|
|
||||||
// can be used to directly match 2-char tokens
|
|
||||||
match (self.current_char, self.peek()) {
|
|
||||||
// Stop lexing at EOF
|
// Stop lexing at EOF
|
||||||
('\0', _) => break,
|
'\0' => break,
|
||||||
|
|
||||||
// Skip / ignore whitespace
|
// Skip whitespace
|
||||||
(' ' | '\t' | '\n' | '\r', _) => (),
|
' ' | '\t' | '\n' | '\r' => (),
|
||||||
|
|
||||||
// Line comment. Consume every char until linefeed (next line)
|
// Line comment. Consume every char until linefeed (next line)
|
||||||
('/', '/') => while !matches!(self.next(), '\n' | '\0') {},
|
'/' if matches!(self.peek(), '/') => while !matches!(self.next(), '\n' | '\0') {},
|
||||||
|
|
||||||
// Double character tokens
|
// Double character tokens
|
||||||
('>', '>') => self.push_tok_consume(T![>>]),
|
'>' if matches!(self.peek(), '>') => {
|
||||||
('<', '<') => self.push_tok_consume(T![<<]),
|
self.next();
|
||||||
('=', '=') => self.push_tok_consume(T![==]),
|
tokens.push(Token::Shr);
|
||||||
('!', '=') => self.push_tok_consume(T![!=]),
|
}
|
||||||
('<', '=') => self.push_tok_consume(T![<=]),
|
'<' if matches!(self.peek(), '<') => {
|
||||||
('>', '=') => self.push_tok_consume(T![>=]),
|
self.next();
|
||||||
('<', '-') => self.push_tok_consume(T![<-]),
|
tokens.push(Token::Shl);
|
||||||
('&', '&') => self.push_tok_consume(T![&&]),
|
}
|
||||||
('|', '|') => self.push_tok_consume(T![||]),
|
'=' if matches!(self.peek(), '=') => {
|
||||||
|
self.next();
|
||||||
|
tokens.push(Token::EquEqu);
|
||||||
|
}
|
||||||
|
'!' if matches!(self.peek(), '=') => {
|
||||||
|
self.next();
|
||||||
|
tokens.push(Token::NotEqu);
|
||||||
|
}
|
||||||
|
'<' if matches!(self.peek(), '=') => {
|
||||||
|
self.next();
|
||||||
|
tokens.push(Token::LAngleEqu);
|
||||||
|
}
|
||||||
|
'>' if matches!(self.peek(), '=') => {
|
||||||
|
self.next();
|
||||||
|
tokens.push(Token::RAngleEqu);
|
||||||
|
}
|
||||||
|
'<' if matches!(self.peek(), '-') => {
|
||||||
|
self.next();
|
||||||
|
tokens.push(Token::LArrow);
|
||||||
|
}
|
||||||
|
'&' if matches!(self.peek(), '&') => {
|
||||||
|
self.next();
|
||||||
|
tokens.push(Token::LAnd);
|
||||||
|
}
|
||||||
|
'|' if matches!(self.peek(), '|') => {
|
||||||
|
self.next();
|
||||||
|
tokens.push(Token::LOr);
|
||||||
|
}
|
||||||
|
|
||||||
// Single character tokens
|
// Single character tokens
|
||||||
(',', _) => self.push_tok(T![,]),
|
';' => tokens.push(Token::Semicolon),
|
||||||
(';', _) => self.push_tok(T![;]),
|
'+' => tokens.push(Token::Add),
|
||||||
('+', _) => self.push_tok(T![+]),
|
'-' => tokens.push(Token::Sub),
|
||||||
('-', _) => self.push_tok(T![-]),
|
'*' => tokens.push(Token::Mul),
|
||||||
('*', _) => self.push_tok(T![*]),
|
'/' => tokens.push(Token::Div),
|
||||||
('/', _) => self.push_tok(T![/]),
|
'%' => tokens.push(Token::Mod),
|
||||||
('%', _) => self.push_tok(T![%]),
|
'|' => tokens.push(Token::BOr),
|
||||||
('|', _) => self.push_tok(T![|]),
|
'&' => tokens.push(Token::BAnd),
|
||||||
('&', _) => self.push_tok(T![&]),
|
'^' => tokens.push(Token::BXor),
|
||||||
('^', _) => self.push_tok(T![^]),
|
'(' => tokens.push(Token::LParen),
|
||||||
('(', _) => self.push_tok(T!['(']),
|
')' => tokens.push(Token::RParen),
|
||||||
(')', _) => self.push_tok(T![')']),
|
'~' => tokens.push(Token::Tilde),
|
||||||
('~', _) => self.push_tok(T![~]),
|
'<' => tokens.push(Token::LAngle),
|
||||||
('<', _) => self.push_tok(T![<]),
|
'>' => tokens.push(Token::RAngle),
|
||||||
('>', _) => self.push_tok(T![>]),
|
'=' => tokens.push(Token::Equ),
|
||||||
('=', _) => self.push_tok(T![=]),
|
'{' => tokens.push(Token::LBraces),
|
||||||
('{', _) => self.push_tok(T!['{']),
|
'}' => tokens.push(Token::RBraces),
|
||||||
('}', _) => self.push_tok(T!['}']),
|
'!' => tokens.push(Token::LNot),
|
||||||
('!', _) => self.push_tok(T![!]),
|
|
||||||
('[', _) => self.push_tok(T!['[']),
|
|
||||||
(']', _) => self.push_tok(T![']']),
|
|
||||||
|
|
||||||
// Special tokens with variable length
|
// Special tokens with variable length
|
||||||
|
|
||||||
// Lex multiple characters together as numbers
|
// Lex multiple characters together as numbers
|
||||||
('0'..='9', _) => self.lex_number()?,
|
ch @ '0'..='9' => tokens.push(self.lex_number(ch)?),
|
||||||
|
|
||||||
// Lex multiple characters together as a string
|
// Lex multiple characters together as a string
|
||||||
('"', _) => self.lex_str()?,
|
'"' => tokens.push(self.lex_str()?),
|
||||||
|
|
||||||
// Lex multiple characters together as identifier or keyword
|
// Lex multiple characters together as identifier
|
||||||
('a'..='z' | 'A'..='Z' | '_', _) => self.lex_identifier()?,
|
ch @ ('a'..='z' | 'A'..='Z' | '_') => tokens.push(self.lex_identifier(ch)?),
|
||||||
|
|
||||||
// Any character that was not handled otherwise is invalid
|
ch => Err(LexErr::UnexpectedChar(ch))?,
|
||||||
(ch, _) => Err(LexErr::UnexpectedChar(ch))?,
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Ok(self.tokens)
|
Ok(tokens)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Lex multiple characters as a number until encountering a non numeric digit. The
|
/// Lex multiple characters as a number until encountering a non numeric digit. This includes
|
||||||
/// successfully lexed i64 literal token is appended to the stored tokens.
|
/// the first character
|
||||||
fn lex_number(&mut self) -> Result<(), LexErr> {
|
fn lex_number(&mut self, first_char: char) -> Result<Token, LexErr> {
|
||||||
// String representation of the integer value
|
// String representation of the integer value
|
||||||
let mut sval = String::from(self.current_char);
|
let mut sval = String::from(first_char);
|
||||||
|
|
||||||
// Do as long as a next char exists and it is a numeric char
|
// Do as long as a next char exists and it is a numeric char
|
||||||
loop {
|
loop {
|
||||||
@ -143,40 +147,31 @@ impl<'a> Lexer<'a> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Try to convert the string representation of the value to i64. The error is mapped to
|
// Try to convert the string representation of the value to i64
|
||||||
// the appropriate LexErr
|
|
||||||
let i64val = sval.parse().map_err(|_| LexErr::NumericParse(sval))?;
|
let i64val = sval.parse().map_err(|_| LexErr::NumericParse(sval))?;
|
||||||
|
Ok(Token::I64(i64val))
|
||||||
self.push_tok(T![i64(i64val)]);
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Lex characters as a string until encountering an unescaped closing doublequoute char '"'.
|
/// Lex characters as a string until encountering an unescaped closing doublequoute char '"'
|
||||||
/// The successfully lexed string literal token is appended to the stored tokens.
|
fn lex_str(&mut self) -> Result<Token, LexErr> {
|
||||||
fn lex_str(&mut self) -> Result<(), LexErr> {
|
// Opening " was consumed in match
|
||||||
// The opening " was consumed in match, so a fresh string can be used
|
|
||||||
let mut text = String::new();
|
let mut text = String::new();
|
||||||
|
|
||||||
// Read all chars until encountering the closing "
|
// Read all chars until encountering the closing "
|
||||||
loop {
|
loop {
|
||||||
match self.peek() {
|
match self.peek() {
|
||||||
// An unescaped doubleqoute ends the current string
|
|
||||||
'"' => break,
|
'"' => break,
|
||||||
|
|
||||||
// If the end of file is reached while still waiting for '"', error out
|
// If the end of file is reached while still waiting for '"', error out
|
||||||
'\0' => Err(LexErr::MissingClosingString)?,
|
'\0' => Err(LexErr::MissingClosingString)?,
|
||||||
|
|
||||||
_ => match self.next() {
|
_ => match self.next() {
|
||||||
// Backslash indicates an escaped character, so consume one more char and
|
// Backshlash indicates an escaped character
|
||||||
// treat it as the escaped char
|
|
||||||
'\\' => match self.next() {
|
'\\' => match self.next() {
|
||||||
'n' => text.push('\n'),
|
'n' => text.push('\n'),
|
||||||
'r' => text.push('\r'),
|
'r' => text.push('\r'),
|
||||||
't' => text.push('\t'),
|
't' => text.push('\t'),
|
||||||
'\\' => text.push('\\'),
|
'\\' => text.push('\\'),
|
||||||
'"' => text.push('"'),
|
'"' => text.push('"'),
|
||||||
// If the escaped char is not handled, it is unsupported and an error
|
|
||||||
ch => Err(LexErr::InvalidStrEscape(ch))?,
|
ch => Err(LexErr::InvalidStrEscape(ch))?,
|
||||||
},
|
},
|
||||||
// All other characters are simply appended to the string
|
// All other characters are simply appended to the string
|
||||||
@ -188,15 +183,12 @@ impl<'a> Lexer<'a> {
|
|||||||
// Consume closing "
|
// Consume closing "
|
||||||
self.next();
|
self.next();
|
||||||
|
|
||||||
self.push_tok(T![str(text)]);
|
Ok(Token::String(text))
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Lex characters from the text as an identifier. The successfully lexed ident or keyword
|
/// Lex characters from the text as an identifier. This includes the first character passed in
|
||||||
/// token is appended to the stored tokens.
|
fn lex_identifier(&mut self, first_char: char) -> Result<Token, LexErr> {
|
||||||
fn lex_identifier(&mut self) -> Result<(), LexErr> {
|
let mut ident = String::from(first_char);
|
||||||
let mut ident = String::from(self.current_char);
|
|
||||||
|
|
||||||
// Do as long as a next char exists and it is a valid char for an identifier
|
// Do as long as a next char exists and it is a valid char for an identifier
|
||||||
loop {
|
loop {
|
||||||
@ -212,46 +204,24 @@ impl<'a> Lexer<'a> {
|
|||||||
|
|
||||||
// Check for pre-defined keywords
|
// Check for pre-defined keywords
|
||||||
let token = match ident.as_str() {
|
let token = match ident.as_str() {
|
||||||
"loop" => T![loop],
|
"loop" => Token::Loop,
|
||||||
"print" => T![print],
|
"print" => Token::Print,
|
||||||
"if" => T![if],
|
"if" => Token::If,
|
||||||
"else" => T![else],
|
"else" => Token::Else,
|
||||||
"fun" => T![fun],
|
|
||||||
"return" => T![return],
|
|
||||||
"break" => T![break],
|
|
||||||
"continue" => T![continue],
|
|
||||||
|
|
||||||
// If it doesn't match a keyword, it is a normal identifier
|
// If it doesn't match a keyword, it is a normal identifier
|
||||||
_ => T![ident(ident)],
|
_ => Token::Ident(ident),
|
||||||
};
|
};
|
||||||
|
|
||||||
self.push_tok(token);
|
Ok(token)
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Push the given token into the stored tokens
|
/// Advance to next character and return the removed char
|
||||||
fn push_tok(&mut self, token: Token) {
|
|
||||||
self.tokens.push(token);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Same as `push_tok` but also consumes the next token, removing it from the code iter. This
|
|
||||||
/// is useful when lexing double char tokens where the second token has only been peeked.
|
|
||||||
fn push_tok_consume(&mut self, token: Token) {
|
|
||||||
self.next();
|
|
||||||
self.tokens.push(token);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Advance to next character and return the removed char. When the end of the code is reached,
|
|
||||||
/// `'\0'` is returned. This is used instead of an Option::None since it allows for much
|
|
||||||
/// shorter and cleaner code in the main loop. The `'\0'` character would not be valid anyways
|
|
||||||
fn next(&mut self) -> char {
|
fn next(&mut self) -> char {
|
||||||
self.code.next().unwrap_or('\0')
|
self.code.next().unwrap_or('\0')
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the next character without removing it. When the end of the code is reached,
|
/// Get the next character without removing it
|
||||||
/// `'\0'` is returned. This is used instead of an Option::None since it allows for much
|
|
||||||
/// shorter and cleaner code in the main loop. The `'\0'` character would not be valid anyways
|
|
||||||
fn peek(&mut self) -> char {
|
fn peek(&mut self) -> char {
|
||||||
self.code.peek().copied().unwrap_or('\0')
|
self.code.peek().copied().unwrap_or('\0')
|
||||||
}
|
}
|
||||||
@ -259,52 +229,31 @@ impl<'a> Lexer<'a> {
|
|||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use crate::{lexer::lex, T};
|
use super::{lex, Token};
|
||||||
|
|
||||||
/// A general test to check if the lexer actually lexes tokens correctly
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_lexer() {
|
fn test_lexer() {
|
||||||
let code = r#"53+1-567_000 * / % | ~ ! < > & ^ ({[]});= <- >= <=
|
let code = "33 +5*2 + 4456467*2334+3 % - / << ^ | & >>";
|
||||||
== != && || << >> loop if else print my_123var "hello \t world\r\n\"\\""#;
|
|
||||||
let expected = vec![
|
let expected = vec![
|
||||||
T![i64(53)],
|
Token::I64(33),
|
||||||
T![+],
|
Token::Add,
|
||||||
T![i64(1)],
|
Token::I64(5),
|
||||||
T![-],
|
Token::Mul,
|
||||||
T![i64(567_000)],
|
Token::I64(2),
|
||||||
T![*],
|
Token::Add,
|
||||||
T![/],
|
Token::I64(4456467),
|
||||||
T![%],
|
Token::Mul,
|
||||||
T![|],
|
Token::I64(2334),
|
||||||
T![~],
|
Token::Add,
|
||||||
T![!],
|
Token::I64(3),
|
||||||
T![<],
|
Token::Mod,
|
||||||
T![>],
|
Token::Sub,
|
||||||
T![&],
|
Token::Div,
|
||||||
T![^],
|
Token::Shl,
|
||||||
T!['('],
|
Token::BXor,
|
||||||
T!['{'],
|
Token::BOr,
|
||||||
T!['['],
|
Token::BAnd,
|
||||||
T![']'],
|
Token::Shr,
|
||||||
T!['}'],
|
|
||||||
T![')'],
|
|
||||||
T![;],
|
|
||||||
T![=],
|
|
||||||
T![<-],
|
|
||||||
T![>=],
|
|
||||||
T![<=],
|
|
||||||
T![==],
|
|
||||||
T![!=],
|
|
||||||
T![&&],
|
|
||||||
T![||],
|
|
||||||
T![<<],
|
|
||||||
T![>>],
|
|
||||||
T![loop],
|
|
||||||
T![if],
|
|
||||||
T![else],
|
|
||||||
T![print],
|
|
||||||
T![ident("my_123var".to_string())],
|
|
||||||
T![str("hello \t world\r\n\"\\".to_string())],
|
|
||||||
];
|
];
|
||||||
|
|
||||||
let actual = lex(code).unwrap();
|
let actual = lex(code).unwrap();
|
||||||
|
|||||||
69
src/lib.rs
69
src/lib.rs
@ -1,68 +1,5 @@
|
|||||||
|
pub mod lexer;
|
||||||
|
pub mod token;
|
||||||
|
pub mod parser;
|
||||||
pub mod ast;
|
pub mod ast;
|
||||||
pub mod interpreter;
|
pub mod interpreter;
|
||||||
pub mod lexer;
|
|
||||||
pub mod parser;
|
|
||||||
pub mod token;
|
|
||||||
pub mod stringstore;
|
|
||||||
pub mod astoptimizer;
|
|
||||||
pub mod util;
|
|
||||||
|
|
||||||
/// A bunch of full program tests using the example code programs as test subjects.
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use crate::interpreter::{Interpreter, Value};
|
|
||||||
use std::fs::read_to_string;
|
|
||||||
|
|
||||||
/// Run a nek program with the given filename from the examples directory and assert the
|
|
||||||
/// captured output with the expected result. This only works if the program just outputs one
|
|
||||||
/// value as the result
|
|
||||||
fn run_example_check_single_i64_output(filename: &str, correct_result: i64) {
|
|
||||||
let mut interpreter = Interpreter::new();
|
|
||||||
// Enable output capturing. This captures all calls to `print`
|
|
||||||
interpreter.capture_output = true;
|
|
||||||
|
|
||||||
// Load and run the given program
|
|
||||||
let code = read_to_string(format!("examples/{filename}")).unwrap();
|
|
||||||
interpreter.run_str(&code);
|
|
||||||
|
|
||||||
// Compare the captured output with the expected value
|
|
||||||
let expected_output = [Value::I64(correct_result)];
|
|
||||||
assert_eq!(interpreter.output(), &expected_output);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_euler1() {
|
|
||||||
run_example_check_single_i64_output("euler1.nek", 233168);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_euler2() {
|
|
||||||
run_example_check_single_i64_output("euler2.nek", 4613732);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_euler3() {
|
|
||||||
run_example_check_single_i64_output("euler3.nek", 6857);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_euler4() {
|
|
||||||
run_example_check_single_i64_output("euler4.nek", 906609);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_euler5() {
|
|
||||||
run_example_check_single_i64_output("euler5.nek", 232792560);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_recursive_fib() {
|
|
||||||
run_example_check_single_i64_output("recursive_fib.nek", 832040);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_functions() {
|
|
||||||
run_example_check_single_i64_output("test_functions.nek", 69);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|||||||
64
src/main.rs
64
src/main.rs
@ -1,14 +1,16 @@
|
|||||||
use std::{env::args, fs, process::exit};
|
use std::{
|
||||||
|
env::args,
|
||||||
|
fs,
|
||||||
|
io::{stdin, stdout, Write},
|
||||||
|
};
|
||||||
|
|
||||||
use nek_lang::{interpreter::Interpreter, nice_panic};
|
use nek_lang::interpreter::Interpreter;
|
||||||
|
|
||||||
/// Cli configuration flags and arguments. This could be done with `clap`, but since only so few
|
|
||||||
/// arguments are supported this seems kind of overkill.
|
|
||||||
#[derive(Debug, Default)]
|
#[derive(Debug, Default)]
|
||||||
struct CliConfig {
|
struct CliConfig {
|
||||||
print_tokens: bool,
|
print_tokens: bool,
|
||||||
print_ast: bool,
|
print_ast: bool,
|
||||||
no_optimizations: bool,
|
interactive: bool,
|
||||||
file: Option<String>,
|
file: Option<String>,
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -20,40 +22,34 @@ fn main() {
|
|||||||
match arg.as_str() {
|
match arg.as_str() {
|
||||||
"--token" | "-t" => conf.print_tokens = true,
|
"--token" | "-t" => conf.print_tokens = true,
|
||||||
"--ast" | "-a" => conf.print_ast = true,
|
"--ast" | "-a" => conf.print_ast = true,
|
||||||
"--no-opt" | "-n" => conf.no_optimizations = true,
|
"--interactive" | "-i" => conf.interactive = true,
|
||||||
"--help" | "-h" => print_help(),
|
file if conf.file.is_none() => conf.file = Some(file.to_string()),
|
||||||
file if !arg.starts_with("-") && conf.file.is_none() => {
|
_ => panic!("Invalid argument: '{}'", arg),
|
||||||
conf.file = Some(file.to_string())
|
|
||||||
}
|
|
||||||
_ => nice_panic!("Error: Invalid argument '{}'", arg),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
let mut interpreter = Interpreter::new();
|
let mut interpreter = Interpreter::new();
|
||||||
|
|
||||||
interpreter.print_tokens = conf.print_tokens;
|
|
||||||
interpreter.print_ast = conf.print_ast;
|
|
||||||
interpreter.optimize_ast = !conf.no_optimizations;
|
|
||||||
|
|
||||||
if let Some(file) = &conf.file {
|
if let Some(file) = &conf.file {
|
||||||
let code = match fs::read_to_string(file) {
|
let code = fs::read_to_string(file).expect(&format!("File not found: '{}'", file));
|
||||||
Ok(code) => code,
|
interpreter.run_str(&code, conf.print_tokens, conf.print_ast);
|
||||||
Err(_) => nice_panic!("Error: Could not read file '{}'", file),
|
}
|
||||||
};
|
|
||||||
// Lex, parse and run the program
|
if conf.interactive || conf.file.is_none() {
|
||||||
interpreter.run_str(&code);
|
let mut code = String::new();
|
||||||
} else {
|
|
||||||
println!("Error: No file given\n");
|
loop {
|
||||||
print_help();
|
print!(">> ");
|
||||||
|
stdout().flush().unwrap();
|
||||||
|
|
||||||
|
code.clear();
|
||||||
|
stdin().read_line(&mut code).unwrap();
|
||||||
|
|
||||||
|
if code.trim() == "exit" {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
interpreter.run_str(&code, conf.print_tokens, conf.print_ast);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn print_help() {
|
|
||||||
println!("Usage nek-lang [FLAGS] [FILE]");
|
|
||||||
println!("FLAGS: ");
|
|
||||||
println!("-t, --token Print the lexed tokens");
|
|
||||||
println!("-a, --ast Print the abstract syntax tree");
|
|
||||||
println!("-n, --no-opt Disable the AST optimizations");
|
|
||||||
println!("-h, --help Show this help screen");
|
|
||||||
exit(0);
|
|
||||||
}
|
|
||||||
|
|||||||
609
src/parser.rs
609
src/parser.rs
@ -1,376 +1,168 @@
|
|||||||
use thiserror::Error;
|
use std::iter::Peekable;
|
||||||
|
|
||||||
use crate::{
|
use crate::ast::*;
|
||||||
ast::{Ast, BlockScope, Expression, FunDecl, If, Loop, Statement, VarDecl},
|
use crate::token::Token;
|
||||||
stringstore::{Sid, StringStore},
|
|
||||||
token::Token,
|
|
||||||
util::{PutBackIter, PutBackableExt},
|
|
||||||
T,
|
|
||||||
};
|
|
||||||
|
|
||||||
/// Errors that can occur while parsing
|
|
||||||
#[derive(Debug, Error)]
|
|
||||||
pub enum ParseErr {
|
|
||||||
#[error("Unexpected Token \"{0:?}\", expected \"{1}\"")]
|
|
||||||
UnexpectedToken(Token, String),
|
|
||||||
|
|
||||||
#[error("Left hand side of declaration is not a variable")]
|
|
||||||
DeclarationOfNonVar,
|
|
||||||
|
|
||||||
#[error("Use of undefined variable \"{0}\"")]
|
|
||||||
UseOfUndeclaredVar(String),
|
|
||||||
|
|
||||||
#[error("Use of undefined function \"{0}\"")]
|
|
||||||
UseOfUndeclaredFun(String),
|
|
||||||
|
|
||||||
#[error("Redeclation of function \"{0}\"")]
|
|
||||||
RedeclarationFun(String),
|
|
||||||
|
|
||||||
#[error("Function not declared at top level \"{0}\"")]
|
|
||||||
FunctionOnNonTopLevel(String),
|
|
||||||
}
|
|
||||||
|
|
||||||
/// A result that can either be Ok, or a ParseErr
|
|
||||||
type ResPE<T> = Result<T, ParseErr>;
|
|
||||||
|
|
||||||
/// This macro can be used to quickly and easily assert if the next token is matching the expected
|
|
||||||
/// token and return an appropriate error if not. Since this is intended to be used inside the
|
|
||||||
/// parser, the first argument should always be `self`.
|
|
||||||
macro_rules! validate_next {
|
|
||||||
($self:ident, $expected_tok:pat, $expected_str:expr) => {
|
|
||||||
match $self.next() {
|
|
||||||
$expected_tok => (),
|
|
||||||
tok => return Err(ParseErr::UnexpectedToken(tok, format!("{}", $expected_str))),
|
|
||||||
}
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Parse the given tokens into an abstract syntax tree
|
/// Parse the given tokens into an abstract syntax tree
|
||||||
pub fn parse<T: Iterator<Item = Token>, A: IntoIterator<IntoIter = T>>(tokens: A) -> ResPE<Ast> {
|
pub fn parse<T: Iterator<Item = Token>, A: IntoIterator<IntoIter = T>>(tokens: A) -> Ast {
|
||||||
let parser = Parser::new(tokens);
|
let mut parser = Parser::new(tokens);
|
||||||
parser.parse()
|
parser.parse()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// A parser that takes in a Token Stream and can create a full abstract syntax tree from it.
|
|
||||||
struct Parser<T: Iterator<Item = Token>> {
|
struct Parser<T: Iterator<Item = Token>> {
|
||||||
tokens: PutBackIter<T>,
|
tokens: Peekable<T>,
|
||||||
string_store: StringStore,
|
|
||||||
var_stack: Vec<Sid>,
|
|
||||||
fun_stack: Vec<Sid>,
|
|
||||||
nesting_level: usize,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T: Iterator<Item = Token>> Parser<T> {
|
impl<T: Iterator<Item = Token>> Parser<T> {
|
||||||
/// Create a new parser to parse the given Token Stream
|
/// Create a new parser to parse the given Token Stream
|
||||||
pub fn new<A: IntoIterator<IntoIter = T>>(tokens: A) -> Self {
|
fn new<A: IntoIterator<IntoIter = T>>(tokens: A) -> Self {
|
||||||
let tokens = tokens.into_iter().putbackable();
|
let tokens = tokens.into_iter().peekable();
|
||||||
let string_store = StringStore::new();
|
Self { tokens }
|
||||||
let var_stack = Vec::new();
|
|
||||||
let fun_stack = Vec::new();
|
|
||||||
Self {
|
|
||||||
tokens,
|
|
||||||
string_store,
|
|
||||||
var_stack,
|
|
||||||
fun_stack,
|
|
||||||
nesting_level: 0,
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Consume the parser and try to create the abstract syntax tree from the token stream
|
/// Parse tokens into an abstract syntax tree. This will continuously parse statements until
|
||||||
pub fn parse(mut self) -> ResPE<Ast> {
|
/// encountering end-of-file or a block end '}' .
|
||||||
let main = self.parse_scoped_block()?;
|
fn parse(&mut self) -> Ast {
|
||||||
Ok(Ast {
|
|
||||||
main,
|
|
||||||
stringstore: self.string_store,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Parse a series of statements together as a BlockScope. This will continuously parse
|
|
||||||
/// statements until encountering end-of-file or a block end '}' .
|
|
||||||
fn parse_scoped_block(&mut self) -> ResPE<BlockScope> {
|
|
||||||
self.parse_scoped_block_fp_offset(0)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Same as parse_scoped_block, but an offset to the framepointer can be specified to allow
|
|
||||||
/// for easily passing variables into scopes from the outside. This is used when parsing
|
|
||||||
/// function calls
|
|
||||||
fn parse_scoped_block_fp_offset(&mut self, framepointer_offset: usize) -> ResPE<BlockScope> {
|
|
||||||
self.nesting_level += 1;
|
|
||||||
let framepointer = self.var_stack.len() - framepointer_offset;
|
|
||||||
let mut prog = Vec::new();
|
let mut prog = Vec::new();
|
||||||
|
|
||||||
loop {
|
loop {
|
||||||
match self.peek() {
|
match self.peek() {
|
||||||
// Just a semicolon is an empty statement. So just consume it
|
Token::Semicolon => {
|
||||||
T![;] => {
|
|
||||||
self.next();
|
self.next();
|
||||||
}
|
}
|
||||||
|
Token::EoF | Token::RBraces => break,
|
||||||
|
|
||||||
// '}' end the current block and EoF ends everything, as the end of the tokenstream
|
// By default try to lex a statement
|
||||||
// is reached
|
_ => prog.push(self.parse_stmt()),
|
||||||
T![EoF] | T!['}'] => break,
|
|
||||||
|
|
||||||
// Create a new scoped block
|
|
||||||
T!['{'] => {
|
|
||||||
self.next();
|
|
||||||
prog.push(Statement::Block(self.parse_scoped_block()?));
|
|
||||||
|
|
||||||
validate_next!(self, T!['}'], "}");
|
|
||||||
}
|
|
||||||
|
|
||||||
// By default try to lex statements
|
|
||||||
_ => prog.push(self.parse_stmt()?),
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Reset the stack to where it was before entering the scope
|
Ast { prog }
|
||||||
self.var_stack.truncate(framepointer);
|
|
||||||
self.nesting_level -= 1;
|
|
||||||
|
|
||||||
Ok(prog)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Parse a single statement from the tokens
|
/// Parse a single statement from the tokens.
|
||||||
fn parse_stmt(&mut self) -> ResPE<Statement> {
|
fn parse_stmt(&mut self) -> Statement {
|
||||||
let stmt = match self.peek() {
|
match self.peek() {
|
||||||
// Break statement
|
Token::Loop => Statement::Loop(self.parse_loop()),
|
||||||
T![break] => {
|
|
||||||
|
Token::Print => {
|
||||||
self.next();
|
self.next();
|
||||||
|
|
||||||
// After the statement, there must be a semicolon
|
let expr = self.parse_expr();
|
||||||
validate_next!(self, T![;], ";");
|
|
||||||
|
|
||||||
Statement::Break
|
// After a statement, there must be a semicolon
|
||||||
}
|
if !matches!(self.next(), Token::Semicolon) {
|
||||||
|
panic!("Expected semicolon after statement");
|
||||||
// Continue statement
|
}
|
||||||
T![continue] => {
|
|
||||||
self.next();
|
|
||||||
|
|
||||||
// After the statement, there must be a semicolon
|
|
||||||
validate_next!(self, T![;], ";");
|
|
||||||
|
|
||||||
Statement::Continue
|
|
||||||
}
|
|
||||||
|
|
||||||
// Loop statement
|
|
||||||
T![loop] => Statement::Loop(self.parse_loop()?),
|
|
||||||
|
|
||||||
// Print statement
|
|
||||||
T![print] => {
|
|
||||||
self.next();
|
|
||||||
|
|
||||||
let expr = self.parse_expr()?;
|
|
||||||
|
|
||||||
// After the statement, there must be a semicolon
|
|
||||||
validate_next!(self, T![;], ";");
|
|
||||||
|
|
||||||
Statement::Print(expr)
|
Statement::Print(expr)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Return statement
|
Token::If => Statement::If(self.parse_if()),
|
||||||
T![return] => {
|
|
||||||
self.next();
|
|
||||||
let stmt = Statement::Return(self.parse_expr()?);
|
|
||||||
|
|
||||||
// After a statement, there must be a semicolon
|
// If it is not a loop, try to lex as an expression
|
||||||
validate_next!(self, T![;], ";");
|
|
||||||
|
|
||||||
stmt
|
|
||||||
}
|
|
||||||
|
|
||||||
// If statement
|
|
||||||
T![if] => Statement::If(self.parse_if()?),
|
|
||||||
|
|
||||||
// Function definition statement
|
|
||||||
T![fun] => {
|
|
||||||
|
|
||||||
self.next();
|
|
||||||
|
|
||||||
// Expect an identifier as the function name
|
|
||||||
let fun_name = match self.next() {
|
|
||||||
T![ident(fun_name)] => fun_name,
|
|
||||||
tok => return Err(ParseErr::UnexpectedToken(tok, "<ident>".to_string())),
|
|
||||||
};
|
|
||||||
|
|
||||||
// Only allow function definitions on the top level
|
|
||||||
if self.nesting_level > 1 {
|
|
||||||
return Err(ParseErr::FunctionOnNonTopLevel(fun_name));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Intern the function name
|
|
||||||
let fun_name = self.string_store.intern_or_lookup(&fun_name);
|
|
||||||
|
|
||||||
// Check if the function name already exists
|
|
||||||
if self.fun_stack.contains(&fun_name) {
|
|
||||||
return Err(ParseErr::RedeclarationFun(
|
|
||||||
self.string_store
|
|
||||||
.lookup(fun_name)
|
|
||||||
.cloned()
|
|
||||||
.unwrap_or("<unknown>".to_string()),
|
|
||||||
));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Put the function name on the fucntion stack for precalculating the stack
|
|
||||||
// positions
|
|
||||||
let fun_stackpos = self.fun_stack.len();
|
|
||||||
self.fun_stack.push(fun_name);
|
|
||||||
|
|
||||||
|
|
||||||
let mut arg_names = Vec::new();
|
|
||||||
|
|
||||||
validate_next!(self, T!['('], "(");
|
|
||||||
|
|
||||||
// Parse the optional arguments inside the parentheses
|
|
||||||
while matches!(self.peek(), T![ident(_)]) {
|
|
||||||
let var_name = match self.next() {
|
|
||||||
T![ident(var_name)] => var_name,
|
|
||||||
_ => unreachable!(),
|
|
||||||
};
|
|
||||||
|
|
||||||
// Intern argument names
|
|
||||||
let var_name = self.string_store.intern_or_lookup(&var_name);
|
|
||||||
arg_names.push(var_name);
|
|
||||||
|
|
||||||
// Push the variable onto the varstack
|
|
||||||
self.var_stack.push(var_name);
|
|
||||||
|
|
||||||
// If there are more args skip the comma so that the loop will read the argname
|
|
||||||
if self.peek() == &T![,] {
|
|
||||||
self.next();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
validate_next!(self, T![')'], ")");
|
|
||||||
|
|
||||||
validate_next!(self, T!['{'], "{");
|
|
||||||
|
|
||||||
// Create the scoped block with a stack offset. This will pop the args that are
|
|
||||||
// added to the stack while parsing args
|
|
||||||
let body = self.parse_scoped_block_fp_offset(arg_names.len())?;
|
|
||||||
|
|
||||||
validate_next!(self, T!['}'], "}");
|
|
||||||
|
|
||||||
Statement::FunDeclare(FunDecl {
|
|
||||||
name: fun_name,
|
|
||||||
fun_stackpos,
|
|
||||||
argnames: arg_names,
|
|
||||||
body: body.into(),
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
// Either a variable declaration statement or an expression statement
|
|
||||||
_ => {
|
_ => {
|
||||||
// To decide if it is a declaration or an expression, a lookahead is needed
|
let stmt = Statement::Expr(self.parse_expr());
|
||||||
let first = self.next();
|
|
||||||
|
|
||||||
let stmt = match (first, self.peek()) {
|
|
||||||
// Identifier and "<-" is a declaration
|
|
||||||
(T![ident(name)], T![<-]) => {
|
|
||||||
self.next();
|
|
||||||
|
|
||||||
let rhs = self.parse_expr()?;
|
|
||||||
|
|
||||||
let sid = self.string_store.intern_or_lookup(&name);
|
|
||||||
let sp = self.var_stack.len();
|
|
||||||
self.var_stack.push(sid);
|
|
||||||
|
|
||||||
Statement::Declaration(VarDecl {
|
|
||||||
name: sid,
|
|
||||||
var_stackpos: sp,
|
|
||||||
rhs,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
// Anything else must be an expression
|
|
||||||
(first, _) => {
|
|
||||||
// Put the first token back in order for the parse_expr to see it
|
|
||||||
self.putback(first);
|
|
||||||
Statement::Expr(self.parse_expr()?)
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// After a statement, there must be a semicolon
|
// After a statement, there must be a semicolon
|
||||||
validate_next!(self, T![;], ";");
|
if !matches!(self.next(), Token::Semicolon) {
|
||||||
|
panic!("Expected semicolon after statement");
|
||||||
|
}
|
||||||
|
|
||||||
stmt
|
stmt
|
||||||
}
|
}
|
||||||
};
|
}
|
||||||
Ok(stmt)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Parse an if statement from the tokens
|
/// Parse an if statement from the tokens
|
||||||
fn parse_if(&mut self) -> ResPE<If> {
|
fn parse_if(&mut self) -> If {
|
||||||
validate_next!(self, T![if], "if");
|
if !matches!(self.next(), Token::If) {
|
||||||
|
panic!("Error lexing if: Expected if token");
|
||||||
let condition = self.parse_expr()?;
|
|
||||||
|
|
||||||
validate_next!(self, T!['{'], "{");
|
|
||||||
|
|
||||||
let body_true = self.parse_scoped_block()?;
|
|
||||||
|
|
||||||
validate_next!(self, T!['}'], "}");
|
|
||||||
|
|
||||||
let mut body_false = BlockScope::default();
|
|
||||||
|
|
||||||
// Optionally parse the else part
|
|
||||||
if self.peek() == &T![else] {
|
|
||||||
self.next();
|
|
||||||
|
|
||||||
validate_next!(self, T!['{'], "{");
|
|
||||||
|
|
||||||
body_false = self.parse_scoped_block()?;
|
|
||||||
|
|
||||||
validate_next!(self, T!['}'], "}");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Ok(If {
|
let condition = self.parse_expr();
|
||||||
condition,
|
|
||||||
body_true,
|
|
||||||
body_false,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Parse a loop statement from the tokens
|
if !matches!(self.next(), Token::LBraces) {
|
||||||
fn parse_loop(&mut self) -> ResPE<Loop> {
|
panic!("Error lexing if: Expected '{{'")
|
||||||
validate_next!(self, T![loop], "loop");
|
}
|
||||||
|
|
||||||
let mut condition = None;
|
let body_true = self.parse();
|
||||||
let mut advancement = None;
|
|
||||||
|
|
||||||
// Check if the optional condition is present
|
if !matches!(self.next(), Token::RBraces) {
|
||||||
if !matches!(self.peek(), T!['{']) {
|
panic!("Error lexing if: Expected '}}'")
|
||||||
condition = Some(self.parse_expr()?);
|
}
|
||||||
|
|
||||||
// Check if the optional advancement is present
|
let mut body_false = Ast::default();
|
||||||
if matches!(self.peek(), T![;]) {
|
|
||||||
self.next();
|
if matches!(self.peek(), Token::Else) {
|
||||||
advancement = Some(self.parse_expr()?);
|
self.next();
|
||||||
|
|
||||||
|
if !matches!(self.next(), Token::LBraces) {
|
||||||
|
panic!("Error lexing if: Expected '{{'")
|
||||||
|
}
|
||||||
|
|
||||||
|
body_false = self.parse();
|
||||||
|
|
||||||
|
if !matches!(self.next(), Token::RBraces) {
|
||||||
|
panic!("Error lexing if: Expected '}}'")
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
validate_next!(self, T!['{'], "{");
|
If {
|
||||||
|
condition,
|
||||||
|
body_true,
|
||||||
|
body_false,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
let body = self.parse_scoped_block()?;
|
/// Parse a loop statement from the tokens
|
||||||
|
fn parse_loop(&mut self) -> Loop {
|
||||||
|
if !matches!(self.next(), Token::Loop) {
|
||||||
|
panic!("Error lexing loop: Expected loop token");
|
||||||
|
}
|
||||||
|
|
||||||
validate_next!(self, T!['}'], "}");
|
let condition = self.parse_expr();
|
||||||
|
let mut advancement = None;
|
||||||
|
|
||||||
Ok(Loop {
|
let body;
|
||||||
|
|
||||||
|
match self.next() {
|
||||||
|
Token::LBraces => {
|
||||||
|
body = self.parse();
|
||||||
|
}
|
||||||
|
|
||||||
|
Token::Semicolon => {
|
||||||
|
advancement = Some(self.parse_expr());
|
||||||
|
|
||||||
|
if !matches!(self.next(), Token::LBraces) {
|
||||||
|
panic!("Error lexing loop: Expected '{{'")
|
||||||
|
}
|
||||||
|
|
||||||
|
body = self.parse();
|
||||||
|
}
|
||||||
|
|
||||||
|
_ => panic!("Error lexing loop: Expected ';' or '{{'"),
|
||||||
|
}
|
||||||
|
|
||||||
|
if !matches!(self.next(), Token::RBraces) {
|
||||||
|
panic!("Error lexing loop: Expected '}}'")
|
||||||
|
}
|
||||||
|
|
||||||
|
Loop {
|
||||||
condition,
|
condition,
|
||||||
advancement,
|
advancement,
|
||||||
body,
|
body,
|
||||||
})
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Parse a single expression from the tokens
|
/// Parse a single expression from the tokens
|
||||||
fn parse_expr(&mut self) -> ResPE<Expression> {
|
fn parse_expr(&mut self) -> Expression {
|
||||||
let lhs = self.parse_primary()?;
|
let lhs = self.parse_primary();
|
||||||
self.parse_expr_precedence(lhs, 0)
|
self.parse_expr_precedence(lhs, 0)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Parse binary expressions with a precedence equal to or higher than min_prec.
|
/// Parse binary expressions with a precedence equal to or higher than min_prec
|
||||||
/// This uses the precedence climbing methode for dealing with the operator precedences:
|
fn parse_expr_precedence(&mut self, mut lhs: Expression, min_prec: u8) -> Expression {
|
||||||
/// https://en.wikipedia.org/wiki/Operator-precedence_parser#Precedence_climbing_method
|
|
||||||
fn parse_expr_precedence(&mut self, mut lhs: Expression, min_prec: u8) -> ResPE<Expression> {
|
|
||||||
while let Some(binop) = &self.peek().try_to_binop() {
|
while let Some(binop) = &self.peek().try_to_binop() {
|
||||||
// Stop if the next operator has a lower binding power
|
// Stop if the next operator has a lower binding power
|
||||||
if !(binop.precedence() >= min_prec) {
|
if !(binop.precedence() >= min_prec) {
|
||||||
@ -381,190 +173,99 @@ impl<T: Iterator<Item = Token>> Parser<T> {
|
|||||||
// valid
|
// valid
|
||||||
let binop = self.next().try_to_binop().unwrap();
|
let binop = self.next().try_to_binop().unwrap();
|
||||||
|
|
||||||
let mut rhs = self.parse_primary()?;
|
let mut rhs = self.parse_primary();
|
||||||
|
|
||||||
while let Some(binop2) = &self.peek().try_to_binop() {
|
while let Some(binop2) = &self.peek().try_to_binop() {
|
||||||
if !(binop2.precedence() > binop.precedence()) {
|
if !(binop2.precedence() > binop.precedence()) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
rhs = self.parse_expr_precedence(rhs, binop.precedence() + 1)?;
|
rhs = self.parse_expr_precedence(rhs, binop.precedence() + 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
lhs = Expression::BinOp(binop, lhs.into(), rhs.into());
|
lhs = Expression::BinOp(binop, lhs.into(), rhs.into());
|
||||||
}
|
}
|
||||||
|
|
||||||
Ok(lhs)
|
lhs
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Parse a primary expression. A primary can be a literal value, variable, function call,
|
/// Parse a primary expression (for now only number)
|
||||||
/// array indexing, parentheses grouping or a unary operation
|
fn parse_primary(&mut self) -> Expression {
|
||||||
fn parse_primary(&mut self) -> ResPE<Expression> {
|
match self.next() {
|
||||||
let primary = match self.next() {
|
|
||||||
// Literal i64
|
// Literal i64
|
||||||
T![i64(val)] => Expression::I64(val),
|
Token::I64(val) => Expression::I64(val),
|
||||||
|
|
||||||
// Literal String
|
// Literal String
|
||||||
T![str(text)] => Expression::String(self.string_store.intern_or_lookup(&text)),
|
Token::String(text) => Expression::String(text.into()),
|
||||||
|
|
||||||
// Array literal. Square brackets containing the array size as expression
|
Token::Ident(name) => Expression::Var(name),
|
||||||
T!['['] => {
|
|
||||||
let size = self.parse_expr()?;
|
|
||||||
|
|
||||||
validate_next!(self, T![']'], "]");
|
|
||||||
|
|
||||||
Expression::ArrayLiteral(size.into())
|
|
||||||
}
|
|
||||||
|
|
||||||
// Array sccess, aka indexing. An ident followed by square brackets containing the
|
|
||||||
// index as an expression
|
|
||||||
T![ident(name)] if self.peek() == &T!['['] => {
|
|
||||||
// Get the stack position of the array variable
|
|
||||||
let sid = self.string_store.intern_or_lookup(&name);
|
|
||||||
let stackpos = self.get_stackpos(sid)?;
|
|
||||||
|
|
||||||
self.next();
|
|
||||||
|
|
||||||
let index = self.parse_expr()?;
|
|
||||||
|
|
||||||
validate_next!(self, T![']'], "]");
|
|
||||||
|
|
||||||
Expression::ArrayAccess(sid, stackpos, index.into())
|
|
||||||
}
|
|
||||||
|
|
||||||
// Identifier followed by parenthesis is a function call
|
|
||||||
T![ident(name)] if self.peek() == &T!['('] => {
|
|
||||||
// Skip the opening parenthesis
|
|
||||||
self.next();
|
|
||||||
|
|
||||||
let sid = self.string_store.intern_or_lookup(&name);
|
|
||||||
|
|
||||||
let mut args = Vec::new();
|
|
||||||
|
|
||||||
// Parse the arguments as expressions
|
|
||||||
while !matches!(self.peek(), T![')']) {
|
|
||||||
let arg = self.parse_expr()?;
|
|
||||||
args.push(arg);
|
|
||||||
|
|
||||||
// If there are more args skip the comma so that the loop will read the argname
|
|
||||||
if self.peek() == &T![,] {
|
|
||||||
self.next();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
validate_next!(self, T![')'], ")");
|
|
||||||
|
|
||||||
// Find the function stack position
|
|
||||||
let fun_stackpos = self.get_fun_stackpos(sid)?;
|
|
||||||
|
|
||||||
Expression::FunCall(sid, fun_stackpos, args)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Just an identifier is a variable
|
|
||||||
T![ident(name)] => {
|
|
||||||
// Find the variable stack position
|
|
||||||
let sid = self.string_store.intern_or_lookup(&name);
|
|
||||||
let stackpos = self.get_stackpos(sid)?;
|
|
||||||
|
|
||||||
Expression::Var(sid, stackpos)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Parentheses grouping
|
// Parentheses grouping
|
||||||
T!['('] => {
|
Token::LParen => {
|
||||||
// Contained inbetween the parentheses can be any other expression
|
let inner_expr = self.parse_expr();
|
||||||
let inner_expr = self.parse_expr()?;
|
|
||||||
|
|
||||||
// Verify that there is a closing parenthesis
|
// Verify that there is a closing parenthesis
|
||||||
validate_next!(self, T![')'], ")");
|
if !matches!(self.next(), Token::RParen) {
|
||||||
|
panic!("Error parsing primary expr: Exepected closing parenthesis ')'");
|
||||||
|
}
|
||||||
|
|
||||||
inner_expr
|
inner_expr
|
||||||
}
|
}
|
||||||
|
|
||||||
// Unary operations or invalid token
|
// Unary negation
|
||||||
tok => match tok.try_to_unop() {
|
Token::Sub => {
|
||||||
// If the token is a valid unary operation, parse it as such
|
let operand = self.parse_primary();
|
||||||
Some(uot) => Expression::UnOp(uot, self.parse_primary()?.into()),
|
Expression::UnOp(UnOpType::Negate, operand.into())
|
||||||
|
}
|
||||||
|
|
||||||
// Otherwise it's an unexpected token
|
// Unary bitwise not (bitflip)
|
||||||
None => return Err(ParseErr::UnexpectedToken(tok, "primary".to_string())),
|
Token::Tilde => {
|
||||||
},
|
let operand = self.parse_primary();
|
||||||
};
|
Expression::UnOp(UnOpType::BNot, operand.into())
|
||||||
|
}
|
||||||
|
|
||||||
Ok(primary)
|
// Unary logical not
|
||||||
|
Token::LNot => {
|
||||||
|
let operand = self.parse_primary();
|
||||||
|
Expression::UnOp(UnOpType::LNot, operand.into())
|
||||||
|
}
|
||||||
|
|
||||||
|
tok => panic!("Error parsing primary expr: Unexpected Token '{:?}'", tok),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Try to get the position of a variable on the variable stack. This is needed to precalculate
|
/// Get the next Token without removing it
|
||||||
/// the stackpositions in order to save time when executing
|
|
||||||
fn get_stackpos(&self, varid: Sid) -> ResPE<usize> {
|
|
||||||
self.var_stack
|
|
||||||
.iter()
|
|
||||||
.rev()
|
|
||||||
.position(|it| *it == varid)
|
|
||||||
.map(|it| it)
|
|
||||||
.ok_or(ParseErr::UseOfUndeclaredVar(
|
|
||||||
self.string_store
|
|
||||||
.lookup(varid)
|
|
||||||
.map(String::from)
|
|
||||||
.unwrap_or("<unknown>".to_string()),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Try to get the position of a function on the function stack. This is needed to precalculate
|
|
||||||
/// the stackpositions in order to save time when executing
|
|
||||||
fn get_fun_stackpos(&self, varid: Sid) -> ResPE<usize> {
|
|
||||||
self.fun_stack
|
|
||||||
.iter()
|
|
||||||
.rev()
|
|
||||||
.position(|it| *it == varid)
|
|
||||||
.map(|it| self.fun_stack.len() - it - 1)
|
|
||||||
.ok_or(ParseErr::UseOfUndeclaredFun(
|
|
||||||
self.string_store
|
|
||||||
.lookup(varid)
|
|
||||||
.map(String::from)
|
|
||||||
.unwrap_or("<unknown>".to_string()),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the next Token without removing it. If there are no more tokens left, the EoF token is
|
|
||||||
/// returned. This follows the same reasoning as in the Lexer
|
|
||||||
fn peek(&mut self) -> &Token {
|
fn peek(&mut self) -> &Token {
|
||||||
self.tokens.peek().unwrap_or(&T![EoF])
|
self.tokens.peek().unwrap_or(&Token::EoF)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Put a single token back into the token stream
|
/// Advance to next Token and return the removed Token
|
||||||
fn putback(&mut self, tok: Token) {
|
|
||||||
self.tokens.putback(tok);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Advance to next Token and return the removed Token. If there are no more tokens left, the
|
|
||||||
/// EoF token is returned. This follows the same reasoning as in the Lexer
|
|
||||||
fn next(&mut self) -> Token {
|
fn next(&mut self) -> Token {
|
||||||
self.tokens.next().unwrap_or(T![EoF])
|
self.tokens.next().unwrap_or(Token::EoF)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
|
use super::{parse, BinOpType, Expression};
|
||||||
use crate::{
|
use crate::{
|
||||||
ast::{BinOpType, Expression, Statement},
|
parser::{Ast, Statement},
|
||||||
parser::parse,
|
token::Token,
|
||||||
T,
|
|
||||||
};
|
};
|
||||||
|
|
||||||
/// A very simple test to check if the parser correctly parses a simple expression
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_parser() {
|
fn test_parser() {
|
||||||
// Expression: 1 + 2 * 3 - 4
|
// Expression: 1 + 2 * 3 + 4
|
||||||
// With precedence: (1 + (2 * 3)) - 4
|
// With precedence: (1 + (2 * 3)) + 4
|
||||||
let tokens = [
|
let tokens = [
|
||||||
T![i64(1)],
|
Token::I64(1),
|
||||||
T![+],
|
Token::Add,
|
||||||
T![i64(2)],
|
Token::I64(2),
|
||||||
T![*],
|
Token::Mul,
|
||||||
T![i64(3)],
|
Token::I64(3),
|
||||||
T![-],
|
Token::Sub,
|
||||||
T![i64(4)],
|
Token::I64(4),
|
||||||
T![;],
|
Token::Semicolon,
|
||||||
];
|
];
|
||||||
|
|
||||||
let expected = Statement::Expr(Expression::BinOp(
|
let expected = Statement::Expr(Expression::BinOp(
|
||||||
@ -583,9 +284,11 @@ mod tests {
|
|||||||
Expression::I64(4).into(),
|
Expression::I64(4).into(),
|
||||||
));
|
));
|
||||||
|
|
||||||
let expected = vec![expected];
|
let expected = Ast {
|
||||||
|
prog: vec![expected],
|
||||||
|
};
|
||||||
|
|
||||||
let actual = parse(tokens).unwrap();
|
let actual = parse(tokens);
|
||||||
assert_eq!(expected, actual.main);
|
assert_eq!(expected, actual);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@ -1,104 +0,0 @@
|
|||||||
use std::collections::HashMap;
|
|
||||||
|
|
||||||
/// A StringID that identifies a String inside the stringstore. This is only valid for the
|
|
||||||
/// StringStore that created the ID. These StringIDs can be trivialy and cheaply copied
|
|
||||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
|
|
||||||
pub struct Sid(usize);
|
|
||||||
|
|
||||||
/// A Datastructure that stores strings, handing out StringIDs that can be used to retrieve the
|
|
||||||
/// real strings at a later point. This is called interning.
|
|
||||||
#[derive(Clone, Default)]
|
|
||||||
pub struct StringStore {
|
|
||||||
/// The actual strings that are stored in the StringStore. The StringIDs match the index of the
|
|
||||||
/// string inside of this strings vector
|
|
||||||
strings: Vec<String>,
|
|
||||||
/// A Hashmap that allows to match already interned Strings to their StringID. This allows for
|
|
||||||
/// deduplication since the same string won't be stored twice
|
|
||||||
sids: HashMap<String, Sid>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl StringStore {
|
|
||||||
|
|
||||||
/// Create a new empty StringStore
|
|
||||||
pub fn new() -> Self {
|
|
||||||
Self { strings: Vec::new(), sids: HashMap::new() }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Put the given string into the StringStore and get a StringID in return. If the string is
|
|
||||||
/// not yet stored, it will be after this.
|
|
||||||
///
|
|
||||||
/// Note: The generated StringIDs are only valid for the StringStore that created them. Using
|
|
||||||
/// the IDs with another StringStore is undefined behavior. It might return wrong Strings or
|
|
||||||
/// None.
|
|
||||||
pub fn intern_or_lookup(&mut self, text: &str) -> Sid {
|
|
||||||
self.sids.get(text).copied().unwrap_or_else(|| {
|
|
||||||
let sid = Sid(self.strings.len());
|
|
||||||
self.strings.push(text.to_string());
|
|
||||||
self.sids.insert(text.to_string(), sid);
|
|
||||||
sid
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Lookup and retrieve a string by the StringID. If the String is not found, None is returned.
|
|
||||||
///
|
|
||||||
/// Note: The generated StringIDs are only valid for the StringStore that created them. Using
|
|
||||||
/// the IDs with another StringStore is undefined behavior. It might return wrong Strings or
|
|
||||||
/// None.
|
|
||||||
pub fn lookup(&self, sid: Sid) -> Option<&String> {
|
|
||||||
self.strings.get(sid.0)
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::StringStore;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_stringstore_intern_lookup() {
|
|
||||||
let mut ss = StringStore::new();
|
|
||||||
let s1 = "Hello";
|
|
||||||
let s2 = "World";
|
|
||||||
|
|
||||||
let id1 = ss.intern_or_lookup(s1);
|
|
||||||
assert_eq!(ss.lookup(id1).unwrap().as_str(), s1);
|
|
||||||
|
|
||||||
let id2 = ss.intern_or_lookup(s2);
|
|
||||||
assert_eq!(ss.lookup(id2).unwrap().as_str(), s2);
|
|
||||||
assert_eq!(ss.lookup(id1).unwrap().as_str(), s1);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_stringstore_no_duplicates() {
|
|
||||||
let mut ss = StringStore::new();
|
|
||||||
let s1 = "Hello";
|
|
||||||
let s2 = "World";
|
|
||||||
|
|
||||||
let id1_1 = ss.intern_or_lookup(s1);
|
|
||||||
assert_eq!(ss.lookup(id1_1).unwrap().as_str(), s1);
|
|
||||||
|
|
||||||
let id1_2 = ss.intern_or_lookup(s1);
|
|
||||||
assert_eq!(ss.lookup(id1_2).unwrap().as_str(), s1);
|
|
||||||
|
|
||||||
// Check that the string is the same
|
|
||||||
assert_eq!(id1_1, id1_2);
|
|
||||||
|
|
||||||
// Check that only one string is actually stored
|
|
||||||
assert_eq!(ss.strings.len(), 1);
|
|
||||||
assert_eq!(ss.sids.len(), 1);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
let id2_1 = ss.intern_or_lookup(s2);
|
|
||||||
assert_eq!(ss.lookup(id2_1).unwrap().as_str(), s2);
|
|
||||||
|
|
||||||
let id2_2 = ss.intern_or_lookup(s2);
|
|
||||||
assert_eq!(ss.lookup(id2_2).unwrap().as_str(), s2);
|
|
||||||
|
|
||||||
// Check that the string is the same
|
|
||||||
assert_eq!(id2_1, id2_2);
|
|
||||||
|
|
||||||
assert_eq!(ss.strings.len(), 2);
|
|
||||||
assert_eq!(ss.sids.len(), 2);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
427
src/token.rs
427
src/token.rs
@ -1,379 +1,146 @@
|
|||||||
use crate::{
|
use crate::ast::BinOpType;
|
||||||
ast::{BinOpType, UnOpType},
|
|
||||||
T,
|
|
||||||
};
|
|
||||||
|
|
||||||
/// Language keywords
|
|
||||||
#[derive(Debug, PartialEq, Eq)]
|
|
||||||
pub enum Keyword {
|
|
||||||
/// Loop keyword ("loop")
|
|
||||||
Loop,
|
|
||||||
/// Print keyword ("print")
|
|
||||||
Print,
|
|
||||||
/// If keyword ("if")
|
|
||||||
If,
|
|
||||||
/// Else keyword ("else")
|
|
||||||
Else,
|
|
||||||
/// Function declaration keyword ("fun")
|
|
||||||
Fun,
|
|
||||||
/// Return keyword ("return")
|
|
||||||
Return,
|
|
||||||
/// Break keyword ("break")
|
|
||||||
Break,
|
|
||||||
/// Continue keyword ("continue")
|
|
||||||
Continue,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Literal values
|
|
||||||
#[derive(Debug, PartialEq, Eq)]
|
|
||||||
pub enum Literal {
|
|
||||||
/// Integer literal (64-bit)
|
|
||||||
I64(i64),
|
|
||||||
/// String literal
|
|
||||||
String(String),
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Combined tokens that consist of a combination of characters
|
|
||||||
#[derive(Debug, PartialEq, Eq)]
|
|
||||||
pub enum Combo {
|
|
||||||
/// Equal Equal ("==")
|
|
||||||
Equal2,
|
|
||||||
|
|
||||||
/// Exclamation mark Equal ("!=")
|
|
||||||
ExclamationMarkEqual,
|
|
||||||
|
|
||||||
/// Ampersand Ampersand ("&&")
|
|
||||||
Ampersand2,
|
|
||||||
|
|
||||||
/// Pipe Pipe ("||")
|
|
||||||
Pipe2,
|
|
||||||
|
|
||||||
/// LessThan LessThan ("<<")
|
|
||||||
LessThan2,
|
|
||||||
|
|
||||||
/// GreaterThan GreaterThan (">>")
|
|
||||||
GreaterThan2,
|
|
||||||
|
|
||||||
/// LessThan Equal ("<=")
|
|
||||||
LessThanEqual,
|
|
||||||
|
|
||||||
/// GreaterThan Equal (">=")
|
|
||||||
GreaterThanEqual,
|
|
||||||
|
|
||||||
/// LessThan Minus ("<-")
|
|
||||||
LessThanMinus,
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Tokens are a group of one or more sourcecode characters that have a meaning together
|
|
||||||
#[derive(Debug, PartialEq, Eq)]
|
#[derive(Debug, PartialEq, Eq)]
|
||||||
pub enum Token {
|
pub enum Token {
|
||||||
/// Literal value token
|
/// Integer literal (64-bit)
|
||||||
Literal(Literal),
|
I64(i64),
|
||||||
|
|
||||||
/// Keyword token
|
/// String literal
|
||||||
Keyword(Keyword),
|
String(String),
|
||||||
|
|
||||||
/// Identifier token (names for variables, functions, ...)
|
/// Identifier (name for variables, functions, ...)
|
||||||
Ident(String),
|
Ident(String),
|
||||||
|
|
||||||
/// Combined tokens consisting of multiple characters
|
/// Loop keyword (loop)
|
||||||
Combo(Combo),
|
Loop,
|
||||||
|
|
||||||
/// Comma (",")
|
/// Print keyword (print)
|
||||||
Comma,
|
Print,
|
||||||
|
|
||||||
/// Equal Sign ("=")
|
/// If keyword (if)
|
||||||
Equal,
|
If,
|
||||||
|
|
||||||
/// Semicolon (";")
|
/// Else keyword (else)
|
||||||
Semicolon,
|
Else,
|
||||||
|
|
||||||
/// End of file (This is not generated by the lexer, but the parser uses this to find the
|
/// Left Parenthesis ('(')
|
||||||
/// end of the token stream)
|
|
||||||
EoF,
|
|
||||||
|
|
||||||
/// Left Bracket ("[")
|
|
||||||
LBracket,
|
|
||||||
|
|
||||||
/// Right Bracket ("]")
|
|
||||||
RBracket,
|
|
||||||
|
|
||||||
/// Left Parenthesis ("(")
|
|
||||||
LParen,
|
LParen,
|
||||||
|
|
||||||
/// Right Parenthesis (")"")
|
/// Right Parenthesis (')')
|
||||||
RParen,
|
RParen,
|
||||||
|
|
||||||
/// Left curly braces ("{")
|
/// Left curly braces ({)
|
||||||
LBraces,
|
LBraces,
|
||||||
|
|
||||||
/// Right curly braces ("}")
|
/// Right curly braces (})
|
||||||
RBraces,
|
RBraces,
|
||||||
|
|
||||||
/// Plus ("+")
|
/// Plus (+)
|
||||||
Plus,
|
Add,
|
||||||
|
|
||||||
/// Minus ("-")
|
/// Minus (-)
|
||||||
Minus,
|
Sub,
|
||||||
|
|
||||||
/// Asterisk ("*")
|
/// Asterisk (*)
|
||||||
Asterisk,
|
Mul,
|
||||||
|
|
||||||
/// Slash ("/")
|
/// Slash (/)
|
||||||
Slash,
|
Div,
|
||||||
|
|
||||||
/// Percent ("%")
|
/// Percent (%)
|
||||||
Percent,
|
Mod,
|
||||||
|
|
||||||
/// Pipe ("|")
|
/// Equal Equal (==)
|
||||||
Pipe,
|
EquEqu,
|
||||||
|
|
||||||
/// Tilde ("~")
|
/// Exclamationmark Equal (!=)
|
||||||
|
NotEqu,
|
||||||
|
|
||||||
|
/// Pipe (|)
|
||||||
|
BOr,
|
||||||
|
|
||||||
|
/// Ampersand (&)
|
||||||
|
BAnd,
|
||||||
|
|
||||||
|
/// Circumflex (^)
|
||||||
|
BXor,
|
||||||
|
|
||||||
|
/// Logical AND (&&)
|
||||||
|
LAnd,
|
||||||
|
|
||||||
|
/// Logical OR (||)
|
||||||
|
LOr,
|
||||||
|
|
||||||
|
/// Shift Left (<<)
|
||||||
|
Shl,
|
||||||
|
|
||||||
|
/// Shift Right (>>)
|
||||||
|
Shr,
|
||||||
|
|
||||||
|
/// Tilde (~)
|
||||||
Tilde,
|
Tilde,
|
||||||
|
|
||||||
/// Logical not ("!")
|
/// Logical not (!)
|
||||||
Exclamationmark,
|
LNot,
|
||||||
|
|
||||||
/// Left angle bracket ("<")
|
/// Left angle bracket (<)
|
||||||
LessThan,
|
LAngle,
|
||||||
|
|
||||||
/// Right angle bracket (">")
|
/// Right angle bracket (>)
|
||||||
GreaterThan,
|
RAngle,
|
||||||
|
|
||||||
/// Ampersand ("&")
|
/// Left angle bracket Equal (<=)
|
||||||
Ampersand,
|
LAngleEqu,
|
||||||
|
|
||||||
/// Circumflex ("^")
|
/// Left angle bracket Equal (>=)
|
||||||
Circumflex,
|
RAngleEqu,
|
||||||
|
|
||||||
|
/// Left arrow (<-)
|
||||||
|
LArrow,
|
||||||
|
|
||||||
|
/// Equal Sign (=)
|
||||||
|
Equ,
|
||||||
|
|
||||||
|
/// Semicolon (;)
|
||||||
|
Semicolon,
|
||||||
|
|
||||||
|
/// End of file
|
||||||
|
EoF,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Token {
|
impl Token {
|
||||||
/// If the Token can be used as a binary operation type, get the matching BinOpType. Otherwise
|
|
||||||
/// return None.
|
|
||||||
pub fn try_to_binop(&self) -> Option<BinOpType> {
|
pub fn try_to_binop(&self) -> Option<BinOpType> {
|
||||||
Some(match self {
|
Some(match self {
|
||||||
T![+] => BinOpType::Add,
|
Token::Add => BinOpType::Add,
|
||||||
T![-] => BinOpType::Sub,
|
Token::Sub => BinOpType::Sub,
|
||||||
|
|
||||||
T![*] => BinOpType::Mul,
|
Token::Mul => BinOpType::Mul,
|
||||||
T![/] => BinOpType::Div,
|
Token::Div => BinOpType::Div,
|
||||||
T![%] => BinOpType::Mod,
|
Token::Mod => BinOpType::Mod,
|
||||||
|
|
||||||
T![&] => BinOpType::BAnd,
|
Token::BAnd => BinOpType::BAnd,
|
||||||
T![|] => BinOpType::BOr,
|
Token::BOr => BinOpType::BOr,
|
||||||
T![^] => BinOpType::BXor,
|
Token::BXor => BinOpType::BXor,
|
||||||
|
|
||||||
T![&&] => BinOpType::LAnd,
|
Token::LAnd => BinOpType::LAnd,
|
||||||
T![||] => BinOpType::LOr,
|
Token::LOr => BinOpType::LOr,
|
||||||
|
|
||||||
T![<<] => BinOpType::Shl,
|
Token::Shl => BinOpType::Shl,
|
||||||
T![>>] => BinOpType::Shr,
|
Token::Shr => BinOpType::Shr,
|
||||||
|
|
||||||
T![==] => BinOpType::EquEqu,
|
Token::EquEqu => BinOpType::EquEqu,
|
||||||
T![!=] => BinOpType::NotEqu,
|
Token::NotEqu => BinOpType::NotEqu,
|
||||||
|
|
||||||
T![<] => BinOpType::Less,
|
Token::LAngle => BinOpType::Less,
|
||||||
T![<=] => BinOpType::LessEqu,
|
Token::LAngleEqu => BinOpType::LessEqu,
|
||||||
|
|
||||||
T![>] => BinOpType::Greater,
|
Token::RAngle => BinOpType::Greater,
|
||||||
T![>=] => BinOpType::GreaterEqu,
|
Token::RAngleEqu => BinOpType::GreaterEqu,
|
||||||
|
|
||||||
T![=] => BinOpType::Assign,
|
Token::LArrow => BinOpType::Declare,
|
||||||
|
Token::Equ => BinOpType::Assign,
|
||||||
_ => return None,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
/// If the token can be used as a unary operation type, get the matching UnOpType. Otherwise
|
|
||||||
/// return None
|
|
||||||
pub fn try_to_unop(&self) -> Option<UnOpType> {
|
|
||||||
Some(match self {
|
|
||||||
T![-] => UnOpType::Negate,
|
|
||||||
T![!] => UnOpType::LNot,
|
|
||||||
T![~] => UnOpType::BNot,
|
|
||||||
|
|
||||||
_ => return None,
|
_ => return None,
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Macro to quickly create a token of the specified kind. As this is implemented as a macro, it
|
|
||||||
/// can be used anywhere including in patterns.
|
|
||||||
///
|
|
||||||
/// An implementation should exist for each token, so that there is no need to ever write out the
|
|
||||||
/// long token definitions.
|
|
||||||
#[macro_export]
|
|
||||||
macro_rules! T {
|
|
||||||
// Keywords
|
|
||||||
[loop] => {
|
|
||||||
crate::token::Token::Keyword(crate::token::Keyword::Loop)
|
|
||||||
};
|
|
||||||
|
|
||||||
[print] => {
|
|
||||||
crate::token::Token::Keyword(crate::token::Keyword::Print)
|
|
||||||
};
|
|
||||||
|
|
||||||
[if] => {
|
|
||||||
crate::token::Token::Keyword(crate::token::Keyword::If)
|
|
||||||
};
|
|
||||||
|
|
||||||
[else] => {
|
|
||||||
crate::token::Token::Keyword(crate::token::Keyword::Else)
|
|
||||||
};
|
|
||||||
|
|
||||||
[fun] => {
|
|
||||||
crate::token::Token::Keyword(crate::token::Keyword::Fun)
|
|
||||||
};
|
|
||||||
|
|
||||||
[return] => {
|
|
||||||
crate::token::Token::Keyword(crate::token::Keyword::Return)
|
|
||||||
};
|
|
||||||
|
|
||||||
[break] => {
|
|
||||||
crate::token::Token::Keyword(crate::token::Keyword::Break)
|
|
||||||
};
|
|
||||||
|
|
||||||
[continue] => {
|
|
||||||
crate::token::Token::Keyword(crate::token::Keyword::Continue)
|
|
||||||
};
|
|
||||||
|
|
||||||
// Literals
|
|
||||||
[i64($($val:tt)*)] => {
|
|
||||||
crate::token::Token::Literal(crate::token::Literal::I64($($val)*))
|
|
||||||
};
|
|
||||||
|
|
||||||
[str($($val:tt)*)] => {
|
|
||||||
crate::token::Token::Literal(crate::token::Literal::String($($val)*))
|
|
||||||
};
|
|
||||||
|
|
||||||
// Ident
|
|
||||||
[ident($($val:tt)*)] => {
|
|
||||||
crate::token::Token::Ident($($val)*)
|
|
||||||
};
|
|
||||||
|
|
||||||
// Combo crate::token::Tokens
|
|
||||||
[==] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::Equal2)
|
|
||||||
};
|
|
||||||
|
|
||||||
[!=] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::ExclamationMarkEqual)
|
|
||||||
};
|
|
||||||
|
|
||||||
[&&] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::Ampersand2)
|
|
||||||
};
|
|
||||||
|
|
||||||
[||] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::Pipe2)
|
|
||||||
};
|
|
||||||
|
|
||||||
[<<] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::LessThan2)
|
|
||||||
};
|
|
||||||
|
|
||||||
[>>] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::GreaterThan2)
|
|
||||||
};
|
|
||||||
|
|
||||||
[<=] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::LessThanEqual)
|
|
||||||
};
|
|
||||||
|
|
||||||
[>=] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::GreaterThanEqual)
|
|
||||||
};
|
|
||||||
|
|
||||||
[<-] => {
|
|
||||||
crate::token::Token::Combo(crate::token::Combo::LessThanMinus)
|
|
||||||
};
|
|
||||||
|
|
||||||
// Normal Tokens
|
|
||||||
[,] => {
|
|
||||||
crate::token::Token::Comma
|
|
||||||
};
|
|
||||||
|
|
||||||
[=] => {
|
|
||||||
crate::token::Token::Equal
|
|
||||||
};
|
|
||||||
|
|
||||||
[;] => {
|
|
||||||
crate::token::Token::Semicolon
|
|
||||||
};
|
|
||||||
|
|
||||||
[EoF] => {
|
|
||||||
crate::token::Token::EoF
|
|
||||||
};
|
|
||||||
|
|
||||||
['['] => {
|
|
||||||
crate::token::Token::LBracket
|
|
||||||
};
|
|
||||||
|
|
||||||
[']'] => {
|
|
||||||
crate::token::Token::RBracket
|
|
||||||
};
|
|
||||||
|
|
||||||
['('] => {
|
|
||||||
crate::token::Token::LParen
|
|
||||||
};
|
|
||||||
|
|
||||||
[')'] => {
|
|
||||||
crate::token::Token::RParen
|
|
||||||
};
|
|
||||||
|
|
||||||
['{'] => {
|
|
||||||
crate::token::Token::LBraces
|
|
||||||
};
|
|
||||||
|
|
||||||
['}'] => {
|
|
||||||
crate::token::Token::RBraces
|
|
||||||
};
|
|
||||||
|
|
||||||
[+] => {
|
|
||||||
crate::token::Token::Plus
|
|
||||||
};
|
|
||||||
|
|
||||||
[-] => {
|
|
||||||
crate::token::Token::Minus
|
|
||||||
};
|
|
||||||
|
|
||||||
[*] => {
|
|
||||||
crate::token::Token::Asterisk
|
|
||||||
};
|
|
||||||
|
|
||||||
[/] => {
|
|
||||||
crate::token::Token::Slash
|
|
||||||
};
|
|
||||||
|
|
||||||
[%] => {
|
|
||||||
crate::token::Token::Percent
|
|
||||||
};
|
|
||||||
|
|
||||||
[|] => {
|
|
||||||
crate::token::Token::Pipe
|
|
||||||
};
|
|
||||||
|
|
||||||
[~] => {
|
|
||||||
crate::token::Token::Tilde
|
|
||||||
};
|
|
||||||
|
|
||||||
[!] => {
|
|
||||||
crate::token::Token::Exclamationmark
|
|
||||||
};
|
|
||||||
|
|
||||||
[<] => {
|
|
||||||
crate::token::Token::LessThan
|
|
||||||
};
|
|
||||||
|
|
||||||
[>] => {
|
|
||||||
crate::token::Token::GreaterThan
|
|
||||||
};
|
|
||||||
|
|
||||||
[&] => {
|
|
||||||
crate::token::Token::Ampersand
|
|
||||||
};
|
|
||||||
|
|
||||||
[^] => {
|
|
||||||
crate::token::Token::Circumflex
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|||||||
167
src/util.rs
167
src/util.rs
@ -1,167 +0,0 @@
|
|||||||
/// Exit the program with error code 1 and format-print the given text on stderr. This pretty much
|
|
||||||
/// works like panic, but doesn't show the additional information that panic adds. Those can be
|
|
||||||
/// interesting for debugging, but don't look that great when building a release executable for an
|
|
||||||
/// end user.
|
|
||||||
/// When running tests or running in debug mode, panic is used to ensure the tests working
|
|
||||||
/// correctly.
|
|
||||||
#[macro_export]
|
|
||||||
macro_rules! nice_panic {
|
|
||||||
($fmt:expr) => {
|
|
||||||
{
|
|
||||||
if cfg!(test) || cfg!(debug_assertions) {
|
|
||||||
panic!($fmt);
|
|
||||||
} else {
|
|
||||||
eprintln!($fmt);
|
|
||||||
std::process::exit(1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
($fmt:expr, $($arg:tt)*) => {
|
|
||||||
{
|
|
||||||
if cfg!(test) || cfg!(debug_assertions) {
|
|
||||||
panic!($fmt, $($arg)*);
|
|
||||||
} else {
|
|
||||||
eprintln!($fmt, $($arg)*);
|
|
||||||
std::process::exit(1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
/// The PutBackIter allows for items to be put back back and to be peeked. Putting an item back
|
|
||||||
/// will cause it to be the next item returned by `next`. Peeking an item will get a reference to
|
|
||||||
/// the next item in the iterator without removing it.
|
|
||||||
///
|
|
||||||
/// The whole PutBackIter behaves analogous to `std::iter::Peekable` with the addition of the
|
|
||||||
/// `putback` function. This is slightly slower than `Peekable`, but allows for an unlimited number
|
|
||||||
/// of putbacks and therefore an unlimited look-ahead range.
|
|
||||||
pub struct PutBackIter<T: Iterator> {
|
|
||||||
iter: T,
|
|
||||||
putback_stack: Vec<T::Item>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T> PutBackIter<T>
|
|
||||||
where
|
|
||||||
T: Iterator,
|
|
||||||
{
|
|
||||||
/// Make the given iterator putbackable, wrapping it in the PutBackIter type. This effectively
|
|
||||||
/// adds the `peek` and `putback` functions.
|
|
||||||
pub fn new(iter: T) -> Self {
|
|
||||||
Self {
|
|
||||||
iter,
|
|
||||||
putback_stack: Vec::new(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Put the given item back into the iterator. This causes the putbacked items to be returned by
|
|
||||||
/// next in last-in-first-out order (aka. stack order). Only after all previously putback items
|
|
||||||
/// have been returned, the actual underlying iterator is used to get items.
|
|
||||||
/// The number of items that can be put back is unlimited.
|
|
||||||
pub fn putback(&mut self, it: T::Item) {
|
|
||||||
self.putback_stack.push(it);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Peek the next item, getting a reference to it without removing it from the iterator. This
|
|
||||||
/// also includes items that were previsouly put back and not yet removed.
|
|
||||||
pub fn peek(&mut self) -> Option<&T::Item> {
|
|
||||||
if self.putback_stack.is_empty() {
|
|
||||||
let it = self.next()?;
|
|
||||||
self.putback(it);
|
|
||||||
}
|
|
||||||
|
|
||||||
self.putback_stack.last()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T> Iterator for PutBackIter<T>
|
|
||||||
where
|
|
||||||
T: Iterator,
|
|
||||||
{
|
|
||||||
type Item = T::Item;
|
|
||||||
|
|
||||||
fn next(&mut self) -> Option<Self::Item> {
|
|
||||||
match self.putback_stack.pop() {
|
|
||||||
Some(it) => Some(it),
|
|
||||||
None => self.iter.next(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub trait PutBackableExt {
|
|
||||||
/// Make the iterator putbackable, wrapping it in the PutBackIter type. This effectively
|
|
||||||
/// adds the `peek` and `putback` functions.
|
|
||||||
fn putbackable(self) -> PutBackIter<Self>
|
|
||||||
where
|
|
||||||
Self: Iterator + Sized,
|
|
||||||
{
|
|
||||||
PutBackIter::new(self)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T: Iterator> PutBackableExt for T {}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use super::PutBackableExt;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn putback_iter_next() {
|
|
||||||
let mut iter = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter();
|
|
||||||
let mut pb_iter = iter.clone().putbackable();
|
|
||||||
|
|
||||||
// Check if next works
|
|
||||||
for _ in 0..iter.len() {
|
|
||||||
assert_eq!(pb_iter.next(), iter.next());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn putback_iter_peek() {
|
|
||||||
let mut iter_orig = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter();
|
|
||||||
let mut iter = iter_orig.clone();
|
|
||||||
let mut pb_iter = iter.clone().putbackable();
|
|
||||||
|
|
||||||
for _ in 0..iter.len() {
|
|
||||||
// Check if peek gives a preview of the actual next element
|
|
||||||
assert_eq!(pb_iter.peek(), iter.next().as_ref());
|
|
||||||
// Check if next still returns the next (just peeked) element and not the one after
|
|
||||||
assert_eq!(pb_iter.next(), iter_orig.next());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn putback_iter_putback() {
|
|
||||||
let mut iter_orig = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter();
|
|
||||||
let mut iter = iter_orig.clone();
|
|
||||||
let mut pb_iter = iter.clone().putbackable();
|
|
||||||
|
|
||||||
// Get the first 5 items with next and check if they match
|
|
||||||
let it0 = pb_iter.next();
|
|
||||||
assert_eq!(it0, iter.next());
|
|
||||||
let it1 = pb_iter.next();
|
|
||||||
assert_eq!(it1, iter.next());
|
|
||||||
let it2 = pb_iter.next();
|
|
||||||
assert_eq!(it2, iter.next());
|
|
||||||
let it3 = pb_iter.next();
|
|
||||||
assert_eq!(it3, iter.next());
|
|
||||||
let it4 = pb_iter.next();
|
|
||||||
assert_eq!(it4, iter.next());
|
|
||||||
|
|
||||||
// Put one value back and check if `next` works as expected, returning the just put back
|
|
||||||
// item
|
|
||||||
pb_iter.putback(it0.unwrap());
|
|
||||||
assert_eq!(pb_iter.next(), it0);
|
|
||||||
|
|
||||||
// Put all values back
|
|
||||||
pb_iter.putback(it4.unwrap());
|
|
||||||
pb_iter.putback(it3.unwrap());
|
|
||||||
pb_iter.putback(it2.unwrap());
|
|
||||||
pb_iter.putback(it1.unwrap());
|
|
||||||
pb_iter.putback(it0.unwrap());
|
|
||||||
|
|
||||||
// After all values have been put back, the iter should match the original again
|
|
||||||
for _ in 0..iter.len() {
|
|
||||||
assert_eq!(pb_iter.next(), iter_orig.next());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Loading…
x
Reference in New Issue
Block a user